A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images

2015 ◽  
Vol 53 (3) ◽  
pp. 1346-1354 ◽  
Author(s):  
Yuxiang Zhang ◽  
Bo Du ◽  
Liangpei Zhang
2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Yidong Tang ◽  
Shucai Huang ◽  
Aijun Xue

The sparse representation based classifier (SRC) and its kernel version (KSRC) have been employed for hyperspectral image (HSI) classification. However, the state-of-the-art SRC often aims at extended surface objects with linear mixture in smooth scene and assumes that the number of classes is given. Considering the small target with complex background, a sparse representation based binary hypothesis (SRBBH) model is established in this paper. In this model, a query pixel is represented in two ways, which are, respectively, by background dictionary and by union dictionary. The background dictionary is composed of samples selected from the local dual concentric window centered at the query pixel. Thus, for each pixel the classification issue becomes an adaptive multiclass classification problem, where only the number of desired classes is required. Furthermore, the kernel method is employed to improve the interclass separability. In kernel space, the coding vector is obtained by using kernel-based orthogonal matching pursuit (KOMP) algorithm. Then the query pixel can be labeled by the characteristics of the coding vectors. Instead of directly using the reconstruction residuals, the different impacts the background dictionary and union dictionary have on reconstruction are used for validation and classification. It enhances the discrimination and hence improves the performance.


2021 ◽  
Vol 13 (20) ◽  
pp. 4102
Author(s):  
Genping Zhao ◽  
Fei Li ◽  
Xiuwei Zhang ◽  
Kati Laakso ◽  
Jonathan Cheung-Wai Chan

Hyperspectral images (HSIs) often contain pixels with mixed spectra, which makes it difficult to accurately separate the background signal from the anomaly target signal. To mitigate this problem, we present a method that applies spectral unmixing and structure sparse representation to accurately extract the pure background features and to establish a structured sparse representation model at a sub-pixel level by using the Archetypal Analysis (AA) scheme. Specifically, spectral unmixing with AA is used to unmix the spectral data to obtain representative background endmember signatures. Moreover the unmixing reconstruction error is utilized for the identification of the target. Structured sparse representation is also adopted for anomaly target detection by using the background endmember features from AA unmixing. Moreover, both the AA unmixing reconstruction error and the structured sparse representation reconstruction error are integrated together to enhance the anomaly target detection performance. The proposed method exploits background features at a sub-pixel level to improve the accuracy of anomaly target detection. Comparative experiments and analysis on public hyperspectral datasets show that the proposed algorithm potentially surpasses all the counterpart methods in anomaly target detection.


2016 ◽  
Vol 55 (27) ◽  
pp. 7604 ◽  
Author(s):  
Minjie Wan ◽  
Guohua Gu ◽  
Weixian Qian ◽  
Kan Ren ◽  
Qian Chen

Sign in / Sign up

Export Citation Format

Share Document