scholarly journals Bi-Velocity Discrete Particle Swarm Optimization and Its Application to Multicast Routing Problem in Communication Networks

2014 ◽  
Vol 61 (12) ◽  
pp. 7141-7151 ◽  
Author(s):  
Meie Shen ◽  
Zhi-Hui Zhan ◽  
Wei-Neng Chen ◽  
Yue-Jiao Gong ◽  
Jun Zhang ◽  
...  
Computation ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 99
Author(s):  
Rodrigo Andrés Gómez-Montoya ◽  
Jose Alejandro Cano ◽  
Pablo Cortés ◽  
Fernando Salazar

Put-away operations typically consist of moving products from depots to allocated storage locations using either operators or Material Handling Equipment (MHE), accounting for important operative costs in warehouses and impacting operations efficiency. Therefore, this paper aims to formulate and solve a Put-away Routing Problem (PRP) in distribution centres (DCs). This PRP formulation represents a novel approach due to the consideration of a fleet of homogeneous Material Handling Equipment (MHE), heterogeneous products linked to a put-away list size, depot location and multi-parallel aisles in a distribution centre. It should be noted that the slotting problem, rather than the PRP, has usually been studied in the literature, whereas the PRP is addressed in this paper. The PRP is solved using a discrete particle swarm optimization (PSO) algorithm that is compared to tabu search approaches (Classical Tabu Search (CTS), Tabu Search (TS) 2-Opt) and an empirical rule. As a result, it was found that a discrete PSO generates the best solutions, as the time savings range from 2 to 13% relative to CTS and TS 2-Opt for different combinations of factor levels evaluated in the experimentation.


2016 ◽  
Vol 25 (04) ◽  
pp. 1650025 ◽  
Author(s):  
Yassine Meraihi ◽  
Dalila Acheli ◽  
Amar Ramdane-Cherif

The quality of service (QoS) multicast routing problem is one of the main issues for transmission in communication networks. It is known to be an NP-hard problem, so many heuristic algorithms have been employed to solve the multicast routing problem and find the optimal multicast tree which satisfies the requirements of multiple QoS constraints such as delay, delay jitter, bandwidth and packet loss rate. In this paper, we propose an improved chaotic binary bat algorithm to solve the QoS multicast routing problem. We introduce two modification methods into the binary bat algorithm. First, we use the two most representative chaotic maps, namely the logistic map and the tent map, to determine the parameter [Formula: see text] of the pulse frequency [Formula: see text]. Second, we use a dynamic formulation to update the parameter α of the loudness [Formula: see text]. The aim of these modifications is to enhance the performance and the robustness of the binary bat algorithm and ensure the diversity of the solutions. The simulation results reveal the superiority, effectiveness and efficiency of our proposed algorithms compared with some well-known algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Jumping Particle Swarm Optimization (JPSO), and Binary Bat Algorithm (BBA).


Sign in / Sign up

Export Citation Format

Share Document