scholarly journals Challenges and Opportunities in Securing the Industrial Internet of Things

Author(s):  
Martin Serror ◽  
Sacha Hack ◽  
Martin Henze ◽  
Marko Schuba ◽  
Klaus Wehrle
2019 ◽  
Vol 34 (6) ◽  
pp. 1203-1209 ◽  
Author(s):  
Paul Matthyssens

Purpose Starting from the foundations of value innovation, this paper aims to give an idea of the key drivers and barriers – internal and external to the company – and to provide insight into proven capabilities underscoring the ability to create a flow of new value initiatives. These thoughts are then confronted with the present challenges of Industry 4.0 and the Industrial Internet of Things (IIoT). The confrontation leads to the identification of five capabilities for future-proof value innovation. Design/methodology/approach Literature review based upon the work of the author with more than two decades of experience within value innovation research is included. The review is supplemented with recent literature and an overview of the challenges of Industry 4.0/IIoT, which leads into a confrontation of the present status of value innovation with future requirements. Findings Value innovation remains important specifically for established companies facing path-breaking digital disruption of their existing business models provoked by Industry 4.0 and IIoT. Five key capabilities are suggested to rejuvenate value innovation and prepare it for the Industry 4.0 challenge: capabilities for designing, adapting and marketing product service systems; capabilities for blending digital strategy and processes with value offerings; capabilities for designing and mobilizing ecosystems and integrating these into a value-based IIoT platform; capabilities for combining and integrating technological and value innovation approaches; and capabilities for linking value creation to value capturing. Research limitations/implications This paper is more of a “viewpoint” than an empirically based paper presenting new research findings. It is based on expert judgment and confrontation with extant literature. The outlook indicating five key capabilities needs further empirical corroboration. Practical implications The overview of barriers and the “toolkit” for value innovation (Figure 1) and the five capabilities for future value innovation are expected to be managerially relevant. Originality/value The paper highlights the concept of value innovation, as discussed over the past decades, and links it to recent challenges and opportunities imposed by Industry 4.0 and the IIoT. The concept of value or strategic innovation is still valid but needs a re-conceptualization in view of these developments. The paper provides five capabilities business marketers should develop to perform value innovation in an Industry 4.0 environment.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-7
Author(s):  
Mohammed Mohammed Sadeeq ◽  
Nasiba M. Abdulkareem ◽  
Subhi R. M. Zeebaree ◽  
Dindar Mikaeel Ahmed ◽  
Ahmed Saifullah Sami ◽  
...  

With the exponential growth of the Industrial Internet of Things (IIoT), multiple outlets are constantly producing a vast volume of data. It is unwise to locally store all the raw data in the IIoT devices since the energy and storage spaces of the end devices are strictly constrained. self-organization and short-range Internet of Things (IoT) networking also support outsourced data and cloud computing, independent of the distinctive resource constraint properties. For the remainder of the findings, there is a sequence of unfamiliar safeguards for IoT and cloud integration problems. The delivery of cloud computing is highly efficient, storage is becoming more and more current, and some groups are now altering their data from in house records Cloud Computing Vendors' hubs. Intensive IoT applications for workloads and data are subject to challenges while utilizing cloud computing tools. In this report, we research IoT and cloud computing and address cloud-compatible problems and computing techniques to promote the stable transition of IoT programs to the cloud.


2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


Sign in / Sign up

Export Citation Format

Share Document