intelligent decision making
Recently Published Documents


TOTAL DOCUMENTS

458
(FIVE YEARS 198)

H-INDEX

18
(FIVE YEARS 5)

2022 ◽  
Vol 22 (1) ◽  
pp. 1-23
Author(s):  
Nan Jiang ◽  
Debin Huang ◽  
Jing Chen ◽  
Jie Wen ◽  
Heng Zhang ◽  
...  

The precise measuring of vehicle location has been a critical task in enhancing the autonomous driving in terms of intelligent decision making and safe transportation. Internet of Vehicles ( IoV ) is an important infrastructure in support of autonomous driving, allowing real-time road information exchanging and sharing for localizing vehicles. Global positioning System ( GPS ) is widely used in the traditional IoV system. GPS is unable to meet the key application requirements of autonomous driving due to meter level error and signal deterioration. In this article, we propose a novel solution, named Semi-Direct Monocular Visual-Inertial Odometry using Point and Line Features ( SDMPL-VIO ) for precise vehicle localization. Our SDMPL-VIO model takes advantage of a low-cost Inertial Measurement Unit ( IMU ) and monocular camera, using them as the sensor to acquire the surrounding environmental information. Visual-Inertial Odometry ( VIO ), taking into account both point and line features, is proposed, which is able to deal with both weak texture and dynamic environment. We use a semi-direct method to deal with keyframes and non-keyframes, respectively. Dual sliding window mechanisms can effectively fuse point-line and IMU information. To evaluate our SDMPL-VIO system model, we conduct extensive experiments on both an indoor dataset (i.e., EuRoC) and an outdoor dataset (i.e., KITTI) from the real-world applications, respectively. The experimental results show that the accuracy of SDMPL-VIO proposed by us is better than the mainstream VIO system at present. Especially in the weak texture of the datasets, fast-moving datasets, and other challenging datasets, SDMPL-VIO has a relatively high robustness.


Author(s):  
Zonghuan Guo ◽  
Dihua Sun ◽  
Lin Zhou

In order to improve the decision-making and control effect of autonomous vehicles, in this paper, combined with literature research and process analysis, the control algorithm of autopilot vehicle is analyzed, and the driving process is analyzed combined with the flow method. In order to improve the effect of autonomous driving, with the support of improved algorithms, an integrated decision-making control system for autonomous vehicles under multi-task constraints in intelligent traffic scenarios is constructed, and system performance is improved by simulating autonomous driving decisions in a variety of complex situations. Moreover, this paper designs the road driving model according to actual needs, sets the functional modules of the entire system, and build the overall framework of the system. Finally, in order to study the integrated decision-making effect of this system, this paper conducts test research by designing a simulation test method. From the simulation test results, it can be seen that the intelligent decision-making system for autonomous vehicles constructed in this paper has certain effects.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Salman Ali Syed ◽  
K. Sheela Sobana Rani ◽  
Gouse Baig Mohammad ◽  
G. Anil kumar ◽  
Krishna Keerthi Chennam ◽  
...  

In 6G edge communication networks, the machine learning models play a major role in enabling intelligent decision-making in case of optimal resource allocation in case of the healthcare system. However, it causes a bottleneck, in the form of sophisticated memory calculations, between the hidden layers and the cost of communication between the edge devices/edge nodes and the cloud centres, while transmitting the data from the healthcare management system to the cloud centre via edge nodes. In order to reduce these hurdles, it is important to share workloads to further eliminate the problems related to complicated memory calculations and transmission costs. The effort aims mainly to reduce storage costs and cloud computing associated with neural networks as the complexity of the computations increases with increasing numbers of hidden layers. This study modifies federated teaching to function with distributed assignment resource settings as a distributed deep learning model. It improves the capacity to learn from the data and assigns an ideal workload depending on the limited available resources, slow network connection, and more edge devices. Current network status can be sent to the cloud centre by the edge devices and edge nodes autonomously using cybertwin, meaning that local data are often updated to calculate global data. The simulation shows how effective resource management and allocation is better than standard approaches. It is seen from the results that the proposed method achieves higher resource utilization and success rate than existing methods. Index Terms are fuzzy, healthcare, bioinformatics, 6G wireless communication, cybertwin, machine learning, neural network, and edge.


2022 ◽  
pp. 406-428
Author(s):  
Lejla Banjanović-Mehmedović ◽  
Fahrudin Mehmedović

Intelligent manufacturing plays an important role in Industry 4.0. Key technologies such as artificial intelligence (AI), big data analytics (BDA), the internet of things (IoT), cyber-physical systems (CPSs), and cloud computing enable intelligent manufacturing systems (IMS). Artificial intelligence (AI) plays an essential role in IMS by providing typical features such as learning, reasoning, acting, modeling, intelligent interconnecting, and intelligent decision making. Artificial intelligence's impact on manufacturing is involved in Industry 4.0 through big data analytics, predictive maintenance, data-driven system modeling, control and optimization, human-robot collaboration, and smart machine communication. The recent advances in machine and deep learning algorithms combined with powerful computational hardware have opened new possibilities for technological progress in manufacturing, which led to improving and optimizing any business model.


2022 ◽  
pp. 1302-1316
Author(s):  
Kitty Tripathi ◽  
Sarika Shrivastava

The chapter discusses the general characteristics of smart grid, which combines different state-of-the-art technologies intended for operative power distribution when the generation is decentralized. Fault's existence in the power grid is entirely unanticipated. Fuzzy logic is the computational intelligence technique that integrates the knowledge base of experts that is either human or system using the qualitative expression. This technique can successfully be applied for end-user who is a prosumer and aims for low electricity bill as well as provide intelligent decision-making skill in the agents of the multi-agent system. Fuzzy inference system can be efficiently used in such systems due to its capability to deal with imprecision, incomplete data, and its strong knowledge base.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012024
Author(s):  
Padmashree Desai ◽  
C Sujatha ◽  
Saumyajit Chakraborty ◽  
Saurav Ansuman ◽  
Sanika Bhandari ◽  
...  

Abstract Intelligent decision-making systems require the potential for forecasting, foreseeing, and reasoning about future events. The issue of video frame prediction has aroused a lot of attention due to its usefulness in many computer vision applications such as autonomous vehicles and robots. Recent deep learning advances have significantly improved video prediction performance. Nevertheless, as top-performing systems attempt to foresee even more future frames, their predictions become increasingly foggy. We developed a method for predicting a future frame based on a series of prior frames that services the Convolutional Long-Short Term Memory (ConvLSTM) model. The input video is segmented into frames, fed to the ConvLSTM model to extract the features and forecast a future frame which can be beneficial in a variety of applications. We have used two metrics to measure the quality of the predicted frame: structural similarity index (SSIM) and perceptual distance, which help in understanding the difference between the actual frame and the predicted frame. The UCF101 data set is used for testing and training in the project. It is a data collection of realistic action videos taken from YouTube with 101 action categories for action detection. The ConvLSTM model is trained and tested for 24 categories from this dataset and a future frame is predicted which yields satisfactory results. We obtained SSIM as 0.95 and perceptual similarity as 24.28 for our system. The suggested work’s results are also compared to those of state-of-the-art approaches, which are shown to be superior.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ronghan Yao ◽  
Xiaojing Du ◽  
Wenyan Qi ◽  
Li Sun

With the development of the connected autonomous bus, the interactions between the bus and social vehicle during the mandatory lane changing for bus exiting become more diverse and complex. This research investigates the evolutionary dynamics of behavioral decision-making for the bus and social vehicle in different scenarios. The evolutionary game model for the connected autonomous bus and social vehicle is built, as do the human-driven bus and social vehicle, and the connected autonomous bus under different penetration rates and social vehicle. The results of numerical experiments reveal that the connected autonomous bus chooses to change lanes in most instances, and the strategies of the human-driven bus show conservative tendencies. Such tendencies are weakened when the connected autonomous bus and human-driven bus are mixed. As for the social vehicle in different scenarios, the strategies that balance overall traffic safety and efficiency are promoted. This research provides some references for intelligent decision-making of lane changing in urban public transportation.


Sign in / Sign up

Export Citation Format

Share Document