Automated model generation for machinery fault diagnosis based on reinforcement learning and neural architecture search

Author(s):  
Jian Zhou ◽  
Lianyu Zheng ◽  
Yiwei Wang ◽  
Cheng Wang ◽  
Robert X. Gao
2021 ◽  
Vol 2 (1) ◽  
pp. 1-25
Author(s):  
Yongsen Ma ◽  
Sheheryar Arshad ◽  
Swetha Muniraju ◽  
Eric Torkildson ◽  
Enrico Rantala ◽  
...  

In recent years, Channel State Information (CSI) measured by WiFi is widely used for human activity recognition. In this article, we propose a deep learning design for location- and person-independent activity recognition with WiFi. The proposed design consists of three Deep Neural Networks (DNNs): a 2D Convolutional Neural Network (CNN) as the recognition algorithm, a 1D CNN as the state machine, and a reinforcement learning agent for neural architecture search. The recognition algorithm learns location- and person-independent features from different perspectives of CSI data. The state machine learns temporal dependency information from history classification results. The reinforcement learning agent optimizes the neural architecture of the recognition algorithm using a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM). The proposed design is evaluated in a lab environment with different WiFi device locations, antenna orientations, sitting/standing/walking locations/orientations, and multiple persons. The proposed design has 97% average accuracy when testing devices and persons are not seen during training. The proposed design is also evaluated by two public datasets with accuracy of 80% and 83%. The proposed design needs very little human efforts for ground truth labeling, feature engineering, signal processing, and tuning of learning parameters and hyperparameters.


2021 ◽  
Vol 103 ◽  
pp. 107150
Author(s):  
Te Han ◽  
Chao Liu ◽  
Rui Wu ◽  
Dongxiang Jiang

2018 ◽  
Vol 57 (12) ◽  
pp. 3920-3934 ◽  
Author(s):  
Jinjiang Wang ◽  
Lunkuan Ye ◽  
Robert X. Gao ◽  
Chen Li ◽  
Laibin Zhang

Sign in / Sign up

Export Citation Format

Share Document