rotating machinery
Recently Published Documents


TOTAL DOCUMENTS

2038
(FIVE YEARS 551)

H-INDEX

63
(FIVE YEARS 17)

2022 ◽  
Vol 167 ◽  
pp. 108524
Author(s):  
Jungho Park ◽  
Yunhan Kim ◽  
Kyumin Na ◽  
Byeng D. Youn ◽  
Yuejian Chen ◽  
...  

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 671
Author(s):  
Daoguang Yang ◽  
Hamid Reza Karimi ◽  
Len Gelman

Some artificial intelligence algorithms have gained much attention in the rotating machinery fault diagnosis due to their robust nonlinear regression properties. In addition, existing deep learning algorithms are usually dependent on single signal features, which would lead to the loss of some information or incomplete use of the information in the signal. To address this problem, three kinds of popular signal processing methods, including Fast Fourier Transform (FFT), Short-Time Fourier Transform (STFT) and directly slicing one-dimensional data into the two-dimensional matrix, are used to create four different datasets from raw vibration signal as the input data of four enhancement Convolutional Neural Networks (CNN) models. Then, a fuzzy fusion strategy is used to fuse the output of four CNN models that could analyze the importance of each classifier and explore the interaction index between each classifier, which is different from conventional fusion strategies. To show the performance of the proposed model, an artificial fault bearing dataset and a real-world bearing dataset are used to test the feature extraction capability of the model. The good anti-noise and interpretation characteristics of the proposed method are demonstrated as well.


2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110729
Author(s):  
Linfeng Deng ◽  
Aihua Zhang ◽  
Rongzhen Zhao

Rolling bearings are the key components of rotating machinery. Incipient fault diagnosis of bearing plays an increasingly important role in guaranteeing normal and safe operation of rotating machinery. However, because of the high complexity of the fault feature extraction, the incipient faults of rolling bearings are difficult to diagnose. To solve this problem, this paper presents a new incipient fault intelligent identification method of rolling bearings based on variational mode decomposition (VMD), principal component analysis (PCA), and support vector machines (SVM). In the proposed method, the bearing vibration signals are decomposed by using VMD, and a series of intrinsic mode functions (IMFs) with different frequencies are obtained. Then, the energy and kurtosis values of each IMF are calculated to reveal the intrinsic characteristics of the vibration signals in different scales. Finally, all energy and kurtosis values of IMFs are processed via PCA and subsequently fed into SVM to achieve the bearing fault identification automatically. The effectiveness of this method is verified through the experimental bearing data. The verification results indicate that the proposed method can effectively extract the bearing fault features and accurately identify the bearing incipient faults, and outperform the two compared methods obviously in identification accuracy and computation time.


Measurement ◽  
2022 ◽  
pp. 110720
Author(s):  
Chaoying Yang ◽  
Jie Liu ◽  
Kaibo Zhou ◽  
Xingxing Jiang ◽  
Xiangyu Zeng

Sign in / Sign up

Export Citation Format

Share Document