scholarly journals Necessary and Sufficient Null Space Condition for Nuclear Norm Minimization in Low-Rank Matrix Recovery

2020 ◽  
Vol 66 (10) ◽  
pp. 6597-6604
Author(s):  
Jirong Yi ◽  
Weiyu Xu
2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Yilun Wang ◽  
Xinhua Su

Recovering a large matrix from limited measurements is a challenging task arising in many real applications, such as image inpainting, compressive sensing, and medical imaging, and these kinds of problems are mostly formulated as low-rank matrix approximation problems. Due to the rank operator being nonconvex and discontinuous, most of the recent theoretical studies use the nuclear norm as a convex relaxation and the low-rank matrix recovery problem is solved through minimization of the nuclear norm regularized problem. However, a major limitation of nuclear norm minimization is that all the singular values are simultaneously minimized and the rank may not be well approximated (Hu et al., 2013). Correspondingly, in this paper, we propose a new multistage algorithm, which makes use of the concept of Truncated Nuclear Norm Regularization (TNNR) proposed by Hu et al., 2013, and iterative support detection (ISD) proposed by Wang and Yin, 2010, to overcome the above limitation. Besides matrix completion problems considered by Hu et al., 2013, the proposed method can be also extended to the general low-rank matrix recovery problems. Extensive experiments well validate the superiority of our new algorithms over other state-of-the-art methods.


Author(s):  
Shuang Li ◽  
Hassan Mansour ◽  
Michael B Wakin

Abstract One of the classical approaches for estimating the frequencies and damping factors in a spectrally sparse signal is the MUltiple SIgnal Classification (MUSIC) algorithm, which exploits the low-rank structure of an autocorrelation matrix. Low-rank matrices have also received considerable attention recently in the context of optimization algorithms with partial observations, and nuclear norm minimization (NNM) has been widely used as a popular heuristic of rank minimization for low-rank matrix recovery problems. On the other hand, it has been shown that NNM can be viewed as a special case of atomic norm minimization (ANM), which has achieved great success in solving line spectrum estimation problems. However, as far as we know, the general ANM (not NNM) considered in many existing works can only handle frequency estimation in undamped sinusoids. In this work, we aim to fill this gap and deal with damped spectrally sparse signal recovery problems. In particular, inspired by the dual analysis used in ANM, we offer a novel optimization-based perspective on the classical MUSIC algorithm and propose an algorithm for spectral estimation that involves searching for the peaks of the dual polynomial corresponding to a certain NNM problem, and we show that this algorithm is in fact equivalent to MUSIC itself. Building on this connection, we also extend the classical MUSIC algorithm to the missing data case. We provide exact recovery guarantees for our proposed algorithms and quantify how the sample complexity depends on the true spectral parameters. In particular, we provide a parameter-specific recovery bound for low-rank matrix recovery of jointly sparse signals rather than use certain incoherence properties as in existing literature. Simulation results also indicate that the proposed algorithms significantly outperform some relevant existing methods (e.g., ANM) in frequency estimation of damped exponentials.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Lingchen Kong ◽  
Levent Tunçel ◽  
Naihua Xiu

Low-rank matrix recovery (LMR) is a rank minimization problem subject to linear equality constraints, and it arises in many fields such as signal and image processing, statistics, computer vision, and system identification and control. This class of optimization problems is generally𝒩𝒫hard. A popular approach replaces the rank function with the nuclear norm of the matrix variable. In this paper, we extend and characterize the concept ofs-goodness for a sensing matrix in sparse signal recovery (proposed by Juditsky and Nemirovski (Math Program, 2011)) to linear transformations in LMR. Using the two characteristics-goodness constants,γsandγ^s, of a linear transformation, we derive necessary and sufficient conditions for a linear transformation to bes-good. Moreover, we establish the equivalence ofs-goodness and the null space properties. Therefore,s-goodness is a necessary and sufficient condition for exacts-rank matrix recovery via the nuclear norm minimization.


2016 ◽  
Vol 5 (4) ◽  
pp. 405-441 ◽  
Author(s):  
Maryia Kabanava ◽  
Richard Kueng ◽  
Holger Rauhut ◽  
Ulrich Terstiege

2020 ◽  
Vol 29 ◽  
pp. 3132-3142 ◽  
Author(s):  
Hengmin Zhang ◽  
Jianjun Qian ◽  
Bob Zhang ◽  
Jian Yang ◽  
Chen Gong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document