sparse signals
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 116)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Nan Meng ◽  
Yun-Bin Zhao

AbstractSparse signals can be possibly reconstructed by an algorithm which merges a traditional nonlinear optimization method and a certain thresholding technique. Different from existing thresholding methods, a novel thresholding technique referred to as the optimal k-thresholding was recently proposed by Zhao (SIAM J Optim 30(1):31–55, 2020). This technique simultaneously performs the minimization of an error metric for the problem and thresholding of the iterates generated by the classic gradient method. In this paper, we propose the so-called Newton-type optimal k-thresholding (NTOT) algorithm which is motivated by the appreciable performance of both Newton-type methods and the optimal k-thresholding technique for signal recovery. The guaranteed performance (including convergence) of the proposed algorithms is shown in terms of suitable choices of the algorithmic parameters and the restricted isometry property (RIP) of the sensing matrix which has been widely used in the analysis of compressive sensing algorithms. The simulation results based on synthetic signals indicate that the proposed algorithms are stable and efficient for signal recovery.


2021 ◽  
Author(s):  
Hiroki Kuroda ◽  
Daichi Kitahara

This paper presents a convex recovery method for block-sparse signals whose block partitions are unknown a priori. We first introduce a nonconvex penalty function, where the block partition is adapted for the signal of interest by minimizing the mixed l2/l1 norm over all possible block partitions. Then, by exploiting a variational representation of the l2 norm, we derive the proposed penalty function as a suitable convex relaxation of the nonconvex one. For a block-sparse recovery model designed with the proposed penalty, we develop an iterative algorithm which is guaranteed to converge to a globally optimal solution. Numerical experiments demonstrate the effectiveness of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Juan Zhao ◽  
Xia Bai ◽  
Tao Shan ◽  
Ran Tao

Compressed sensing can recover sparse signals using a much smaller number of samples than the traditional Nyquist sampling theorem. Block sparse signals (BSS) with nonzero coefficients occurring in clusters arise naturally in many practical scenarios. Utilizing the sparse structure can improve the recovery performance. In this paper, we consider recovering arbitrary BSS with a sparse Bayesian learning framework by inducing correlated Laplacian scale mixture (LSM) prior, which can model the dependence of adjacent elements of the block sparse signal, and then a block sparse Bayesian learning algorithm is proposed via variational Bayesian inference. Moreover, we present a fast version of the proposed recovery algorithm, which does not involve the computation of matrix inversion and has robust recovery performance in the low SNR case. The experimental results with simulated data and ISAR imaging show that the proposed algorithms can efficiently reconstruct BSS and have good antinoise ability in noisy environments.


Sign in / Sign up

Export Citation Format

Share Document