A Survey on Post-Quantum Public-Key Signature Schemes for Secure Vehicular Communications

Author(s):  
Kyung-Ah Shim
2013 ◽  
Vol 380-384 ◽  
pp. 2435-2438 ◽  
Author(s):  
Shu Rong Feng ◽  
Jiao Mo ◽  
Hua Zhang ◽  
Zheng Ping Jin

Certificateless short signature schemes can not only have the advantage of certificateless signature, but also provide a short signature size in communication. However, all existing certificateless short signature schemes only proven secure against a normal adversary which can only obtain the valid signature for the original public key rather than a super adversary which can obtain the valid signature for the replaced public key. Recently, Fan et al. proposed a certificateless short signature scheme which is very efficient, but we found it is still cannot against super adversary. In this paper, we first analysis their scheme, and then present an improved scheme which can against super adversaries. Furthermore, our scheme can provide both the strongest security level and the shortest signature size compared the existed provably secure certificateless short signature scheme.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 130024-130031 ◽  
Author(s):  
Tao Shang ◽  
Ranyiliu Chen ◽  
Qi Lei

2011 ◽  
Vol 282-283 ◽  
pp. 307-311
Author(s):  
Li Zhen Ma

Any one who knows the signer’s public key can verify the validity of a given signature in partially blind signature schemes. This verifying universality may be used by cheats if the signed message is sensitive or personal. To solve this problem, a new convertible user designating confirmer partially blind signature, in which only the designated confirmer (designated by the user) and the user can verify and confirm the validity of given signatures and convert given signatures into publicly verifiable ones, is proposed. Compared with Huang et al.’s scheme, the signature size is shortened about 25% and the computation quantity is reduced about 36% in the proposed scheme. Under random oracle model and intractability of Discrete Logarithm Problem the proposed scheme is provably secure.


2013 ◽  
Vol 380-384 ◽  
pp. 1899-1902
Author(s):  
Ling Ling Wang

Most existing verifiable ring signature schemes are based on traditional PKCs, which cannot resist future attacks of quantum computers. Fortunately, the MQ-problem based Multivariate Public-Key Cryptosystem (MPKC) is an important alternative to traditional PKCs for its potential to resist future attacks of quantum computers. In this paper, we proposed a construction of verifiable ring signature based on MPKC, which has the properties of consistent, unforgery, signer-anonymity and verifiability.


Sign in / Sign up

Export Citation Format

Share Document