Real-Time Distributed Economic Dispatch Adapted to General Convex Cost Functions: a Secant Approximation-based Method

2021 ◽  
pp. 1-1
Author(s):  
Haiwang Zhong ◽  
Xinfei Yan ◽  
Zhenfei Tan
2019 ◽  
Vol 21 (02) ◽  
pp. 1940010 ◽  
Author(s):  
Pierre Von Mouche ◽  
Takashi Sato

We consider the equilibrium uniqueness problem for a large class of Cournot oligopolies with convex cost functions and a proper price function [Formula: see text] with decreasing price flexibility. This class allows for (at [Formula: see text]) discontinuous industry revenue and in particular for [Formula: see text]. The paper illustrates in an exemplary way the Selten–Szidarovszky technique based on virtual backward reply functions. An algorithm for the calculation of the unique equilibrium is provided.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3133 ◽  
Author(s):  
Hongji Lin ◽  
Chongyu Wang ◽  
Fushuan Wen ◽  
Chung-Li Tseng ◽  
Jiahua Hu ◽  
...  

The integration of numerous intermittent renewable energy sources (IRESs) poses challenges to the power supply-demand balance due to the inherent intermittent and uncertain power outputs of IRESs, which requires higher operational flexibility of the power system. The deployment of flexible ramping products (FRPs) provides a new alternative to accommodate the high penetration of IRESs. Given this background, a bi-level risk-limiting real-time unit commitment/real-time economic dispatch model considering FRPs provided by different flexibility resources is proposed. In the proposed model, the objective is to maximize the social surplus while minimizing the operational risk, quantified using the concept of conditional value-at-risk (CVaR). Energy and ramping capabilities of conventional generating units during the start-up or shut-down processes are considered, while meeting the constraints including unit start-up/shut-down trajectories and ramping up/down rates in consecutive time periods. The Karush–Kuhn–Tucker (KKT) optimality conditions are then used to convert the bi-level programming problem into a single-level one, which can be directly solved after linearization. The modified IEEE 14-bus power system is employed to demonstrate the proposed method, and the role of FRPs in enhancing the system flexibility and improving the accommodation capability for IRESs is illustrated in some operation scenarios of the sample system. The impact of the confidence level in CVaR on the system operational flexibility is also investigated through case studies. Finally, a case study is conducted on a regional power system in Guangdong Province, China to demonstrate the potential of the proposed method for practical applications.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 15282-15291 ◽  
Author(s):  
Jianquan Zhu ◽  
Pian Duan ◽  
Mingbo Liu ◽  
Yunrui Xia ◽  
Ye Guo ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document