Performance analysis of the FastICA algorithm and Crame/spl acute/r-rao bounds for linear independent component analysis

2006 ◽  
Vol 54 (4) ◽  
pp. 1189-1203 ◽  
Author(s):  
P. Tichavsky ◽  
Z. Koldovsky ◽  
E. Oja
2020 ◽  
Author(s):  
Adam Borowicz

Abstract Independent component analysis (ICA) is a popular technique for demixing multi-channel data. The performance of typical ICA algorithm strongly depends on many factors such as the presence of additive noise, the actual distribution of source signals, and the estimated number of non-Gaussian components. Often a linear mixing model is assumed and the source signals are extracted by proceeding data whitening followed by a sequence of plane (Jacobi) rotations. In this article, we develop a four-unit, symmetric algorithm, based on the quaternionic factorization of the rotation matrices and the Newton-Raphson iterative scheme. Unlike conventional rotational techniques such as the JADE algorithm, our method exploits 4 x 4 rotation matrices and uses negentropy approximation as a contrast function. Consequently, the proposed method can be adapted to a given data distribution (e.g. super-Gaussians) by selecting the appropriate non-linear function that approximates the negentropy. Compared to the widely used, symmetric FastICA algorithm, the proposed method does not require an orthogonalization step and offers better numerical stability in the presence of multiple Gaussian sources.


2020 ◽  
Vol 8 (3) ◽  
pp. 219
Author(s):  
Angga Pramana Putra ◽  
I Gede Arta Wibawa

Geguntangan is pesantian in religious ceremonies in Bali accompanied by gamelan music. The human sense of hearing tends to have limitations, which causes not all vocals mixed with gamelan to be heard clearly. Therefore we need a system that can be used to separate vocals with gamelan in the geguntangan. Separation of sound sources is categorized as Blind Source Separation (BSS) or also called Blind Signal Separation, which means an unknown source. The algorithm used to handle BSS is the Fast Independent Component Analysis (FastICA) algorithm with a focus on separating the sound signal in a wav-format sound file. FastICA algorithm is used for the sound separation process with the value parameter used is Mean Square Error (MSE). From the simulation results show the results of MSE calculations using the mixing matrix [0.3816, 0.8678], [0.8534, -0.5853] obtained the results for the FastICA method, the MSE value is 3.60 x 10-5 for the vocal and 1.71 x 10-6 for the instrument.


2020 ◽  
Author(s):  
Adam Borowicz

Abstract Independent component analysis (ICA) is a popular technique for demixing multi-channel data. The performance of a typical ICA algorithm strongly depends on the presence of additive noise, the actual distribution of source signals, and the estimated number of non-Gaussian components. Often a linear mixing model is assumed and source signals are extracted by data whitening followed by a sequence of plane (Jacobi) rotations. In this article, we develop a novel algorithm, based on the quaternionic factorization of rotation matrices and the Newton-Raphson iterative scheme. Unlike conventional rotational techniques such as the JADE algorithm, our method exploits $4 \times 4$ rotation matrices and uses approximate negentropy as a contrast function. Consequently, the proposed method can be adjusted to a given data distribution (e.g. super-Gaussians) by selecting a suitable non-linear function that approximates the negentropy. Compared to the widely-used, the symmetric FastICA algorithm, the proposed method does not require an orthogonalization step and is more accurate in the presence of multiple Gaussian sources.


Sign in / Sign up

Export Citation Format

Share Document