ica algorithm
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 27)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Naiyi Du ◽  
Zhao Zhang ◽  
Yao Xiao ◽  
Lijie Jiang

The aim of this study was to analyze the application value of functional magnetic resonance imaging (FMRI) optimized by the fast independent component correlation algorithm (ICA algorithm) in the diagnosis of brain functional areas in patients with lumbar disc herniation (LDH). An optimized fast ICA algorithm was established based on the ICA algorithm. 50 patients with cerebral infarction were selected as the research objects, and 30 healthy people were selected as the control group. The 50 patients from the observation group were examined by fMRI based on Fast ICA algorithm, while the control group was tested by fMRI based on the routine ICA algorithm. The performances of the two algorithms, the analysis results of the two groups of brain functional areas, cerebral blood flow (CBF), resting state functional connectivity (rsFC), behavioral data, and image data correlation of patients were compared. The results showed that the sensitivity, specificity, and accuracy of Fast ICA algorithm were 97.83%, 89.52%, and 96.27%, respectively, which in the experimental group were greatly better than the control group (88.73%, 72.19%, and 89.72%), showing statistically significant differences ( P < 0.05 ). The maximum Dice coefficient of FAST ICA algorithm was 0.967, and FAST ICA algorithm was better obviously than the traditional ICA algorithm ( P < 0.05 ). The cerebral blood flow of the healthy superior frontal gyrus (SFG) and healthy superior marginal gyrus (SMG) of the observation group with good motor function recovery were 1.02 ± 0.22 and 1.53 ± 0.61, respectively; both indicators showed an increasing trend, and those in the experimental group were much higher in contrast to the control group, showing statistically obvious differences ( P < 0.05 ). Besides, the detection results of cerebral blood flow (CBF) in the healthy SFG and healthy SMG were negatively correlated with the results of connection test B. In summary, the fMRI based on the Fast ICA algorithm showed a good diagnostic effect in the changes of brain functional areas in patients with cerebral infarction. The experimental results showed that the cerebral blood flow in the brain area was related to motor or cognitive function. The results of this study provided a reliable reference for the examination and diagnosis of brain functional areas in patients with cerebral infarction.


2021 ◽  
Author(s):  
◽  
Timothy Sherry

<p>An online convolutive blind source separation solution has been developed for use in reverberant environments with stationary sources. Results are presented for simulation and real world data. The system achieves a separation SINR of 16.8 dB when operating on a two source mixture, with a total acoustic delay was 270 ms. This is on par with, and in many respects outperforms various published algorithms [1],[2]. A number of instantaneous blind source separation algorithms have been developed, including a block wise and recursive ICA algorithm, and a clustering based algorithm, able to obtain up to 110 dB SIR performance. The system has been realised in both Matlab and C, and is modular, allowing for easy update of the ICA algorithm that is the core of the unmixing process.</p>


2021 ◽  
Author(s):  
◽  
Timothy Sherry

<p>An online convolutive blind source separation solution has been developed for use in reverberant environments with stationary sources. Results are presented for simulation and real world data. The system achieves a separation SINR of 16.8 dB when operating on a two source mixture, with a total acoustic delay was 270 ms. This is on par with, and in many respects outperforms various published algorithms [1],[2]. A number of instantaneous blind source separation algorithms have been developed, including a block wise and recursive ICA algorithm, and a clustering based algorithm, able to obtain up to 110 dB SIR performance. The system has been realised in both Matlab and C, and is modular, allowing for easy update of the ICA algorithm that is the core of the unmixing process.</p>


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 959
Author(s):  
Bahman Abbassi ◽  
Li-Zhen Cheng

A major problem in the post-inversion geophysical interpretation is the extraction of geological information from inverted physical property models, which do not necessarily represent all underlying geological features. No matter how accurate the inversions are, each inverted physical property model is sensitive to limited aspects of subsurface geology and is insensitive to other geological features that are otherwise detectable with complementary physical property models. Therefore, specific parts of the geological model can be reconstructed from different physical property models. To show how this reconstruction works, we simulated a complex geological system that comprised an original layered Earth model that has passed several geological deformations and alteration overprints. Linear combination of complex geological features comprised three physical property distributions: electrical resistivity, induced polarization chargeability, and magnetic susceptibility models. This study proposes a multivariate feature extraction approach to extract information about the underlying geological features comprising the bulk physical properties. We evaluated our method in numerical simulations and compared three feature extraction algorithms to see the tolerance of each method to the geological artifacts and noises. We show that the fast-independent component analysis (Fast-ICA) algorithm by negentropy maximization is a robust method in the geological feature extraction that can handle the added unknown geological noises. The post-inversion physical properties were also used to reconstruct the underlying geological sources. We show that the sharpness of the inverted images is an important constraint on the feature extraction process. Our method successfully separates geological features in multiple 3D physical property models. This methodology is reproducible for any number of lithologies and physical property combinations and can recover the latent geological features, including the background geological patterns from overprints of chemical alteration.


Author(s):  
Bahman Abbassi ◽  
Li Zhen Cheng

A major problem in the post-inversion geophysical interpretation is the extraction of geological information from inverted physical property models, which do not necessarily represent all underlying geological features. No matter how accurate the inversions are, each inverted physical property model is sensitive to limited aspects of subsurface geology and is insensitive to other geological features that are otherwise detectable with complementary physical property models. Therefore, specific parts of the geological model can be reconstructed from different physical property models. To show how this reconstruction works, we simulated a complex geological system that comprises an original layered earth model that has passed several geological deformations and alteration overprints. Linear combination of complex geological features comprised three physical property distributions: Electrical resistivity, induced polarization chargeability, and magnetic susceptibility models. This study proposes a multivariate feature extraction approach to extract information about the underlying geological features comprising the bulk physical properties. We evaluated our method in numerical simulations and compared three feature extraction algorithms to see the tolerance of each method to the geological artifacts and noises. We show that the fast-independent component analysis (fast-ICA) algorithm by negentropy maximization is a robust method in the geological feature extraction that can handle the added unknown geological noises. The post-inversion physical properties are also used to reconstruct the underlying geological sources. We show that the sharpness of the inverted images is an important constraint on the feature extraction process. Our method successfully separates geological features in multiple 3D physical property models. This methodology is reproducible for any number of lithologies and physical property combinations and can recover the latent geological features, including the background geological patterns from overprints of chemical alteration.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Bofeng Zhao ◽  
Fuxia Yang ◽  
Lan Guan ◽  
Xinbei Li ◽  
Yuanming Hu ◽  
...  

In this paper, the application of 3-dimensional (3D) functional magnetic resonance imaging (FMRI) in the diagnosis of the 5th lumbar (L5) nerve root compression and brain functional areas in patients with lumbar disc herniation (LDH) was analyzed. The traditional fast independent component analysis (Fast ICA) algorithm was optimized based on the modified whitening matrix to establish a new type of Modified-Fast ICA (M-Fast ICA) algorithm that was compared with the introduced traditional Fast ICA and ICA. M-Fast ICA was applied to the 3D FMRI diffusion tensor imaging (DTI) evaluation of 65 patients with L5 nerve root pain due to LDH (group A) and 50 healthy volunteers (group B). The values of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) in the lumbar nerve roots (L3, L4, L5, and the 1st sacral vertebra (S1)) were recorded among subjects from the two groups. Besides, the score of edema degree in the lumbar nerve roots (L5 and S1) and activity of brain functional areas were also recorded among all subjects of the two groups. The results showed that the mean square error of M-Fast ICA was smaller than that of traditional Fast ICA and ICA, while its signal-to-noise ratio (SNR) was greater than that of Fast ICA and ICA ( P < 0.05 ). The FA of L5 and S1 nerve roots in patients of group A was sharply lower than the values of group B, while the ADC of patients in group A was greater than that of the control group ( P < 0.05 ). Besides, the score of edema in L5 and S1 nerve roots of patients in group A increased in contrast to group B ( P < 0.05 ). The brain areas were activated after surgery including bilateral temporal lobe, left thalamus, splenium of corpus callosum, and right internal capsule. In conclusion, the 3D image denoising performance of M-Fast ICA optimized and constructed in this study was superior to that of the traditional Fast ICA and ICA. The FA of patients with L5 nerve root pain due to LDH decreased steeply, while the ADC increased dramatically. L5 nerve root pain caused by LDH resulted in changes in brain functional areas of the patients to inhibit the resting state default network activity, and the corresponding brain functional areas could be activated through treatment.


2021 ◽  
Author(s):  
Muhammad Zubair

<pre>Alcoholism is a widely affected disorder that leads to critical brain deficiencies such as emotional and behavioural impairments. One of the prominent sources to detect alcoholism is by analysing Electroencephalogram (EEG) signals. Previously, most of the works have focused on detecting alcoholism using various machine and deep learning algorithms. This paper has used a novel algorithm named Sliding Singular Spectrum Analysis (S-SSA) to decompose and de-noise the EEG signals. We have considered independent component analysis (ICA) to select the prominent alcoholic and non-alcoholic components from the preprocessed EEG data. Later, these components were used to train and test various machine learning models like SVM, KNN, ANN, GBoost, AdaBoost and XGBoost to classify alcoholic and non-alcoholic EEG signals. The sliding SSA-ICA algorithm helps in reducing the computational time and complexity of the machine learning models. To validate the performance of the ICA algorithm, we have compared the computational time and accuracy of ICA with its counterpart, like principal component analysis (PCA). The proposed algorithm is tested on a publicly available UCI alcoholic EEG dataset. To verify the performance of machine learning models, we have calculated various metrics like accuracy, precision, recall and F1 score. Our work reported the highest accuracy of 98.97% with the XGBoost classifier. The validation of the proposed method is done by comparing the classification metrics with the latest state-of-the-art works.</pre>


2021 ◽  
Author(s):  
Muhammad Zubair

<pre>Alcoholism is a widely affected disorder that leads to critical brain deficiencies such as emotional and behavioural impairments. One of the prominent sources to detect alcoholism is by analysing Electroencephalogram (EEG) signals. Previously, most of the works have focused on detecting alcoholism using various machine and deep learning algorithms. This paper has used a novel algorithm named Sliding Singular Spectrum Analysis (S-SSA) to decompose and de-noise the EEG signals. We have considered independent component analysis (ICA) to select the prominent alcoholic and non-alcoholic components from the preprocessed EEG data. Later, these components were used to train and test various machine learning models like SVM, KNN, ANN, GBoost, AdaBoost and XGBoost to classify alcoholic and non-alcoholic EEG signals. The sliding SSA-ICA algorithm helps in reducing the computational time and complexity of the machine learning models. To validate the performance of the ICA algorithm, we have compared the computational time and accuracy of ICA with its counterpart, like principal component analysis (PCA). The proposed algorithm is tested on a publicly available UCI alcoholic EEG dataset. To verify the performance of machine learning models, we have calculated various metrics like accuracy, precision, recall and F1 score. Our work reported the highest accuracy of 98.97% with the XGBoost classifier. The validation of the proposed method is done by comparing the classification metrics with the latest state-of-the-art works.</pre>


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Quanbo Lu ◽  
Mei Li

Aiming at the problem that real engineering vibration signals are interfered by strong noise, this paper proposes a method combining single channel-independent component analysis (SCICA) and fractal analysis (FD) to reduce the effect of noise on the time-frequency analysis of vibration signals. First, phase space reconstruction is performed on the vibration signal to make the proper input for ICA algorithm. The original is then decomposed into several component signals. The fractal dimension of each component signals is calculated to determine whether the signal should be considered noise. Noisy component signals are then processed by wavelet denoising. Finally, the output signal after noise reduction is reconstructed using the filtered “right” component signals. This paper uses the method to analyze real noisy vibration signal. Experimental results show the effectiveness of the proposed method.


Author(s):  
Chao Zhang ◽  
Xiaopei Wu ◽  
Jianchao Lu ◽  
Xi Zheng ◽  
Alireza Jolfaei ◽  
...  

With the rapid development of various computing technologies, the constraints of data processing capabilities gradually disappeared, and more data can be simultaneously processed to obtain better performance compared to conventional methods. As a standard statistical analysis method that has been widely used in many fields, Independent Component Analysis (ICA) provides a new way for motion detection by extracting the foreground without precisely modeling the background. However, most existing ICA-based motion detection algorithms use only two-channel data for source separation and simply generate the observation vectors by decomposing and reconstructing the images by row, hence they cannot obtain an integrated and accurate shape of the moving objects in complex scenes. In this article, we propose a refined ICA algorithm for motion detection (RICA-MD), which fuses a larger number of channels than conventional ICA-based motion detection algorithms to provide more effective information for foreground extraction. Meanwhile, we propose four novel methods for generating observation vectors to further cover the diverse motion styles of the moving objects. These improvements enable RICA-MD to effectively deal with slowly moving objects, which are difficult to detect using conventional methods. Our quantitative evaluation in multiple scenes shows that our proposed method is able to achieve a better performance at an acceptable cost of false alarms.


Sign in / Sign up

Export Citation Format

Share Document