Decentralized Reactive Power Optimization Method for Transmission and Distribution Networks Accommodating Large-Scale DG Integration

2017 ◽  
Vol 8 (1) ◽  
pp. 363-373 ◽  
Author(s):  
Chenhui Lin ◽  
Wenchuan Wu ◽  
Boming Zhang ◽  
Bin Wang ◽  
Weiye Zheng ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3556
Author(s):  
Linan Qu ◽  
Shujie Zhang ◽  
Hsiung-Cheng Lin ◽  
Ning Chen ◽  
Lingling Li

The large-scale renewable energy power plants connected to a weak grid may cause bus voltage fluctuations in the renewable energy power plant and even power grid. Therefore, reactive power compensation is demanded to stabilize the bus voltage and reduce network loss. For this purpose, time-series characteristics of renewable energy power plants are firstly reflected using K-means++ clustering method. The time group behaviors of renewable energy power plants, spatial behaviors of renewable energy generation units, and a time-and-space grouping model of renewable energy power plants are thus established. Then, a mixed-integer optimization method for reactive power compensation in renewable energy power plants is developed based on the second-order cone programming (SOCP). Accordingly, power flow constraints can be simplified to achieve reactive power optimization more efficiently and quickly. Finally, the feasibility and economy for the proposed method are verified by actual renewable energy power plants.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaodong Shen ◽  
Yang Liu ◽  
Yan Liu

In order to solve the uncertainty and randomness of the output of the renewable energy resources and the load fluctuations in the reactive power optimization, this paper presents a novel approach focusing on dealing with the issues aforementioned in dynamic reactive power optimization (DRPO). The DRPO with large amounts of renewable resources can be presented by two determinate large-scale mixed integer nonlinear nonconvex programming problems using the theory of direct interval matching and the selection of the extreme value intervals. However, it has been admitted that the large-scale mixed integer nonlinear nonconvex programming is quite difficult to solve. Therefore, in order to simplify the solution, the heuristic search and variable correction approaches are employed to relax the nonconvex power flow equations to obtain a mixed integer quadratic programming model which can be solved using software packages such as CPLEX and GUROBI. The ultimate solution and the performance of the presented approach are compared to the traditional methods based on the evaluations using IEEE 14-, 118-, and 300-bus systems. The experimental results show the effectiveness of the presented approach, which potentially can be a significant tool in DRPO research.


2014 ◽  
Vol 1008-1009 ◽  
pp. 421-425
Author(s):  
Yong Jin Chen ◽  
Jie He Su ◽  
Yong Jun Zhang ◽  
Ying Qi Yi

A reactive power optimization method based on interval arithmetic is presented to solve the uncertainty of the output of distributed generation (DG) and the effects of load fluctuation. The concept of interval number and interval arithmetic is introduced to model the interval power flow of distribution system, which is iterated by using the Krawczyk-Moore operator. The objective function is to minimize the interval midpoint value of system’s power loss, with taking the interval voltage constraints into consideration for the interval reactive power optimization model. A modified IEEE 14-bus system is used to validate the proposed model and its Particle Swarm Optimization (PSO) algorithm. The simulation results show that the proposed method is effective.


Sign in / Sign up

Export Citation Format

Share Document