nonconvex programming
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 3)

H-INDEX

17
(FIVE YEARS 0)

Author(s):  
N. Ghafari ◽  
H. Mohebi

AbstractIn this paper, we study the optimization problem (P) of minimizing a convex function over a constraint set with nonconvex constraint functions. We do this by given new characterizations of Robinson’s constraint qualification, which reduces to the combination of generalized Slater’s condition and generalized sharpened nondegeneracy condition for nonconvex programming problems with nearly convex feasible sets at a reference point. Next, using a version of the strong CHIP, we present a constraint qualification which is necessary for optimality of the problem (P). Finally, using new characterizations of Robinson’s constraint qualification, we give necessary and sufficient conditions for optimality of the problem (P).


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhichuan Zhu ◽  
Yeong-Cheng Liou

In the paper, the aggregate constraint-shifting homotopy method for solving general nonconvex nonlinear programming is considered. The aggregation is only about inequality constraint functions. Without any cone condition for the constraint functions, the existence and convergence of the globally convergent solution to the K-K-T system are obtained for both feasible and infeasible starting points under much weaker conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhenping Wang ◽  
Yonghong Zhang ◽  
Paolo Manfredi

Since the sum of linear ratios problem (SLRP) has many applications in real life, for globally solving it, an efficient branch and bound algorithm is presented in this paper. By utilizing the characteristic of the problem (SLRP), we propose a convex separation technique and a two-part linearization technique, which can be used to generate a sequence of linear programming relaxation of the initial nonconvex programming problem. For improving the convergence speed of this algorithm, a deleting rule is presented. The convergence of this algorithm is established, and some experiments are reported to show the feasibility and efficiency of the proposed algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaodong Shen ◽  
Yang Liu ◽  
Yan Liu

In order to solve the uncertainty and randomness of the output of the renewable energy resources and the load fluctuations in the reactive power optimization, this paper presents a novel approach focusing on dealing with the issues aforementioned in dynamic reactive power optimization (DRPO). The DRPO with large amounts of renewable resources can be presented by two determinate large-scale mixed integer nonlinear nonconvex programming problems using the theory of direct interval matching and the selection of the extreme value intervals. However, it has been admitted that the large-scale mixed integer nonlinear nonconvex programming is quite difficult to solve. Therefore, in order to simplify the solution, the heuristic search and variable correction approaches are employed to relax the nonconvex power flow equations to obtain a mixed integer quadratic programming model which can be solved using software packages such as CPLEX and GUROBI. The ultimate solution and the performance of the presented approach are compared to the traditional methods based on the evaluations using IEEE 14-, 118-, and 300-bus systems. The experimental results show the effectiveness of the presented approach, which potentially can be a significant tool in DRPO research.


2018 ◽  
Vol 2018 ◽  
pp. 1-26 ◽  
Author(s):  
Keping Li ◽  
Hangfei Huang ◽  
Paul Schonfeld

For the train timetabling problem (TTP) in a metro system, the operator-oriented and passenger-oriented objectives are both important but partly conflicting. This paper aims to minimize both objectives by considering frequency (in the line planning stage) and train cost (in the vehicle scheduling stage). Time-varying passenger demand and train capacity are considered in a nonsmooth, nonconvex programming model, which is transformed into a mixed integer programming model with a discrete time-space graph (DTSG). A novel dwell time determining process considering congestion at stations is proposed, which turns the dwell times into dependent variables. In the solution approach, we decompose the TTP into a subproblem for optimizing segment travel times (OST) and a subproblem for optimizing departure headways from the shunting yard (OH). Branch-and-bound and frequency determining algorithms are designed to solve OST. A novel rolling optimization algorithm is designed to solve OH. The numerical experiments include case studies on a short metro line and Beijing Metro Line 4, as well as sensitivity analyses. The results demonstrate the predictive ability of the model, verify the effectiveness and efficiency of the proposed approach, and provide practical insights for different scenarios, which can be used for decision-making support in daily operations.


2017 ◽  
Vol 29 (11) ◽  
pp. 3040-3077 ◽  
Author(s):  
Duy Nhat Phan ◽  
Hoai An Le Thi ◽  
Tao Pham Dinh

This letter proposes a novel approach using the [Formula: see text]-norm regularization for the sparse covariance matrix estimation (SCME) problem. The objective function of SCME problem is composed of a nonconvex part and the [Formula: see text] term, which is discontinuous and difficult to tackle. Appropriate DC (difference of convex functions) approximations of [Formula: see text]-norm are used that result in approximation SCME problems that are still nonconvex. DC programming and DCA (DC algorithm), powerful tools in nonconvex programming framework, are investigated. Two DC formulations are proposed and corresponding DCA schemes developed. Two applications of the SCME problem that are considered are classification via sparse quadratic discriminant analysis and portfolio optimization. A careful empirical experiment is performed through simulated and real data sets to study the performance of the proposed algorithms. Numerical results showed their efficiency and their superiority compared with seven state-of-the-art methods.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Hongwei Jiao ◽  
Lei Cai ◽  
Zhisong Hou ◽  
Chunyang Bai

In this study, we propose an effective algorithm for globally solving the sum of linear ratios problems. Firstly, by introducing new variables, we transform the initial problem into an equivalent nonconvex programming problem. Secondly, by utilizing direct relaxation, the linear relaxation programming problem of the equivalent problem can be constructed. Thirdly, in order to improve the computational efficiency of the algorithm, an out space pruning technique is derived, which offers a possibility of pruning a large part of the out space region which does not contain the optimal solution of the equivalent problem. Fourthly, based on out space partition, by combining bounding technique and pruning technique, a new out space branch-and-bound algorithm for globally solving the sum of linear ratios problems (SLRP) is designed. Finally, numerical experimental results are presented to demonstrate both computational efficiency and solution quality of the proposed algorithm.


2017 ◽  
Vol 55 (1) ◽  
pp. 168-193 ◽  
Author(s):  
Xiaojun Chen ◽  
Lei Guo ◽  
Zhaosong Lu ◽  
Jane J. Ye

Sign in / Sign up

Export Citation Format

Share Document