On the Use of Anisotropic Mesh Technique (AMT) in Transverse Wave Approach (TWA) for the EM Analysis of Microwave Circuits in Wireless Applications

Author(s):  
Mohamed Ayari ◽  
Taoufik Aguili ◽  
Helmi Temimi ◽  
Henri Baudrand
2020 ◽  
Vol 20 (1) ◽  
pp. 31-38
Author(s):  
Mohamed Ayari ◽  
Yamen El Touati ◽  
Saleh Altowaijri

The art of benchmarking study has improved at an astonishing rate the scientific research in all areas but mainly in microwave engineering domain, and in particular, the field of microwave (MW) and radiofrequency (RF) integrated circuit design. Moreover, the fast simulation of complex MF/RF structures is considered a big challenge for the simulators, mainly in light of the continuous information and communication technology (ICT) development. In this context, the present paper sets out to present two important numerical electromagnetic (EM) methods, the method of moments (MOM) and our advanced transverse wave approach (A-TWA) for full-wave analysis of RF/MW structures. The computational complexity of these methods is evaluated. Two complex printed antennas working in the RF/MW range are selected and investigated. The EM problems that can be found in these circuits and that could not be solved analytically or by other numerical methods are discussed. The EM-validation of the studied structures using A-TWA and MOM is demonstrated and compared in the context of RF/MW applications. The obtained simulation results prove the efficiency and rapidity of our approach in comparison with the literature.


1986 ◽  
Vol 47 (C8) ◽  
pp. C8-89-C8-92 ◽  
Author(s):  
R. V. VEDRINSKII ◽  
L. A. BUGAEV

2017 ◽  
Vol 13 (1) ◽  
pp. 4522-4534
Author(s):  
Armando Tomás Canero

This paper presents sound propagation based on a transverse wave model which does not collide with the interpretation of physical events based on the longitudinal wave model, but responds to the correspondence principle and allows interpreting a significant number of scientific experiments that do not follow the longitudinal wave model. Among the problems that are solved are: the interpretation of the location of nodes and antinodes in a Kundt tube of classical mechanics, the traslation of phonons in the vacuum interparticle of quantum mechanics and gravitational waves in relativistic mechanics.


2020 ◽  
Vol 27 (1) ◽  
pp. 29-38
Author(s):  
Teng Zhang ◽  
Junsheng Ren ◽  
Lu Liu

AbstractA three-dimensional (3D) time-domain method is developed to predict ship motions in waves. To evaluate the Froude-Krylov (F-K) forces and hydrostatic forces under the instantaneous incident wave profile, an adaptive mesh technique based on a quad-tree subdivision is adopted to generate instantaneous wet meshes for ship. For quadrilateral panels under both mean free surface and instantaneous incident wave profiles, Froude-Krylov forces and hydrostatic forces are computed by analytical exact pressure integration expressions, allowing for considerably coarse meshes without loss of accuracy. And for quadrilateral panels interacting with the wave profile, F-K and hydrostatic forces are evaluated following a quad-tree subdivision. The transient free surface Green function (TFSGF) is essential to evaluate radiation and diffraction forces based on linear theory. To reduce the numerical error due to unclear partition, a precise integration method is applied to solve the TFSGF in the partition computation time domain. Computations are carried out for a Wigley hull form and S175 container ship, and the results show good agreement with both experimental results and published results.


Sign in / Sign up

Export Citation Format

Share Document