printed antennas
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 46)

H-INDEX

29
(FIVE YEARS 3)

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Francesco Paolo Chietera ◽  
Riccardo Colella ◽  
Luca Catarinucci

One of the most promising and exciting research fields of the last decade is that of 3D-printed antennas, as proven by the increasing number of related scientific papers. More specifically, the most common and cost-effective 3D printing technologies, which have become more and more widespread in recent years, are particularly suitable for the development of dielectric resonator antennas (DRAs), which are very interesting types of antennas exhibiting good gain, excellent efficiency, and potentially very small size. After a brief survey on how additive manufacturing (AM) can be used in 3D printing of antennas and how much the manufacturing process of DRAs can benefit from those technologies, a specific example, consisting of a wideband antenna operating at 2.4 GHz and 3.8 GHz, was deeply analyzed, realized, and tested. The obtained prototype exhibited compact size (60 × 60 × 16 mm3, considering the whole antenna) and a good agreement between measured and simulated S11, with a fractional bandwidth of 46%. Simulated gain and efficiency were also quite good, with values of 5.45 dBi and 6.38 dBi for the gain and 91% and 90% for the efficiency, respectively, at 2.45 GHz and 3.6 GHz.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012047
Author(s):  
P V Arsenov ◽  
A S Sobolev ◽  
A A Efimov ◽  
V V Ivanov

Abstract A double slot antenna for X-band applications was designed and aerosol jet printing technology was used to fabricate the prototype with silver nano-ink on a flexible polyimide substrate. We investigated the microwave losses of printed antennas in the range from 100 kHz to 27 GHz, obtained at sintering temperatures of 200 °C and 250 °C. Double slot X-band antennas have been calculated and measured. It was found that an operating bandwidth of the printed antenna is 10% in the region of the central frequency of 10.5 GHz. Thus, the possibility of forming antennas on flexible polymer substrates with high functional characteristics by aerosol jet printing method has been demonstrated.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jiangniu Wu ◽  
Jing Sun ◽  
Jinyong Fang

The bandwidth of a printed rectangular loop antenna with two gaps can be enlarged by using the metallic strips as directors. However, the directivity is not good. Because the two closely spaced metallic strips act as a building block, they can be used to block the propagation of electromagnetic waves. Therefore, two closely spaced metallic strips as a new reflector are adopted and investigated in this paper for improving the directivity of antenna. Two arrangement modes of the printed antennas with two closely spaced strips are designed, fabricated, and measured. Experimental results show that the impedance bandwidth of type A antenna (with inner strip) is about 62.5% ranging from 2.3 to 4.39 GHz. In addition, the gain of 3.8–5.2 dBi and 2 dB improvement of F/B ratio are achieved. Type B antenna (with outer strip) can realize a 62% measured bandwidth ranging from 2.29 to 4.35 GHz. Also, about 3.4 to 4.9 dBi of gain with 2.5 dB improvement of F/B ratio is obtained. The measured F/B ratios of the two modified antennas are both better than 10 dB within the operating frequency band. Measured results verified that adopting the two closely spaced metallic strips as a new reflector can both enhance the F/B ratio and gain without changing the overall dimensions and operating frequency.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5500
Author(s):  
Jarne Machiels ◽  
Raf Appeltans ◽  
Dieter Klaus Bauer ◽  
Elien Segers ◽  
Zander Henckens ◽  
...  

Intelligent packaging is an emerging technology, aiming to improve the standard communication function of packaging. Radio frequency identification (RFID) assisted smart packaging is of high interest, but the uptake is limited as the market needs cost-efficient and sustainable applications. The integration of screen printed antennas and RFID chips as smart labels in reusable cardboard packaging could offer a solution. Although paper is an interesting and recyclable material, printing on this substrate is challenging as the ink conductivity is highly influenced by the paper properties. In this study, the best paper/functional silver ink combinations were first selected out of 76 paper substrates based on the paper surface roughness, air permeance, sheet resistance and SEM characterization. Next, a flexible high frequency RFID chip (13.56 MHz) was connected on top of screen printed antennas with a conductive adhesive. Functional RFID labels were integrated in cardboard packaging and its potential application as reusable smart box for third party logistics was tested. In parallel, a web-based software application mimicking its functional abilities in the logistic cycle was developed. This multidisciplinary approach to developing an easy-scalable screen printed antenna and RFID-assisted smart packaging application is a good example for future implementation of hybrid electronics in sustainable smart packaging.


Author(s):  
G. Christina

Antennas are metallic structure elements developed for transmitting signals through radio waves. Nowadays, antennas are available in different shape depending upon their application and signal strength. The antennas which are employed for space and large signal communication utilizes a bowl shape structure for focusing the signals on a single point. Certain antennas are designed to move on both horizontal and vertical directions for their signal transmission. The microstrip patch antennas are very small in size and it comes under the type of printed antennas. The microstrip patch antennas are widely employed on mobile phone communications and medical applications. The performances of the microstrip patch antennas are increased in recent years and the motive of the review work is to analyse the methodology followed behind it. In the same way, the work analyses the merits and limitations of the recent techniques developed for the performance improvement of the microstrip patch antennas.


Author(s):  
Serhii Bukharov ◽  
Dmitriy Svinarenko ◽  
Leonid Filins'kyy
Keyword(s):  

Author(s):  
Liisa Hakola ◽  
Elina Jansson ◽  
Romain Futsch ◽  
Tuomas Happonen ◽  
Victor Thenot ◽  
...  

AbstractSustainability in electronics has a growing importance due to, e.g. increasing electronic waste, and global and European sustainability goals. Printing technologies and use of paper as a substrate enable manufacturing of sustainable electronic devices for emerging applications, such as the multi-layer anti-counterfeit label presented in this paper. This device consisted of electrochromic display (ECD) element, NFC (near field communication) tag and circuitry, all fully roll-to-roll (R2R) printed and assembled on plastic-free paper substrate, thus leading to a sustainable and recyclable device. Our setup uses harvested energy from HF field of a smartphone or reader, to switch an electrochromic display after rectification to prove authenticity of a product. Our novelty is in upscaling the manufacturing process to be fully printable and R2R processable in high-throughput conditions simulating industrial environment, i.e. in pilot scale. The printing workflow consisted of 11 R2R printed layers, all done in sufficient quality and registration. The printed antennas showed sheet resistance values of 32.9±1.9 mΩ/sq. The final yield was almost 1500 fully printed devices, and in R2R assembly over 1400 labels were integrated with 96.5% yield. All the assembled tags were readable with mobile phone NFC reader. The optical contrast (ΔE*) measured for the ECDs was over 15 for all the printed displays, a progressive switching time with a colour change visible in less than 5 s. The smart tag is ITO-free, plastic-free, fully printed in R2R and has a good stability over 50 cycles and reversible colour change from light to dark blue.


Sign in / Sign up

Export Citation Format

Share Document