wireless applications
Recently Published Documents


TOTAL DOCUMENTS

2634
(FIVE YEARS 681)

H-INDEX

45
(FIVE YEARS 6)

Author(s):  
Islam T. Almalkawi ◽  
Ashraf H. Al-Bqerat ◽  
Awni Itradat ◽  
Jamal N. Al-Karaki

<p>Amplifiers are widely used in signal receiving circuits, such as antennas, medical imaging, wireless devices and many other applications. However, one of the most challenging problems when building an amplifier circuit is the noise, since it affects the quality of the intended received signal in most wireless applications. Therefore, a preamplifier is usually placed close to the main sensor to reduce the effects of interferences and to amplify the received signal without degrading the signal-to-noise ratio. Although different designs have been optimized and tested in the literature, all of them are using larger than 100 nm technologies which have led to a modest performance in terms of equivalent noise charge (ENC), gain, power consumption, and response time. In contrast, we consider in this paper a new amplifier design technology trend and move towards sub 100 nm to enhance its performance. In this work, we use a pre-well-known design of a preamplifier circuit and rebuild it using 45 nm CMOS technology, which is made for the first time in such circuits. Performance evaluation shows that our proposed scaling technology, compared with other scaling technology, extremely reduces ENC of the circuit by more than 95%. The noise spectral density and time resolution are also reduced by 25% and 95% respectively. In addition, power consumption is decreased due to the reduced channel length by 90%. As a result, all of those enhancements make our proposed circuit more suitable for medical and wireless devices.</p>


2022 ◽  
Vol 25 (3) ◽  
pp. 23-27
Author(s):  
Junfeng Junfeng Guan ◽  
Jitian Zhang ◽  
Ruochen Lu ◽  
Hyungjoo Seo ◽  
Jin Zhou ◽  
...  

The ever-increasing demand for wireless applications has resulted in an unprecedented radio frequency (RF) spectrum shortage. Ironically, at the same time, actual utilization of the spectrum is sparse in practice [1]. To exploit previously underutilized frequency bands to accommodate new unlicensed applications and achieve highly efficient usage of the spectrum, the Federal Communications Committee (FCC) has repurposed many frequency bands for dynamic spectrum sharing. This includes the 6 GHz band to be shared between Wi-Fi 6 and the incumbent users [2] as well as the 3.5 GHz Citizens Broadband Radio Service (CBRS) band [3].


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Azeem Mohammed Abdul ◽  
Usha Rani Nelakuditi

Purpose The purpose of this paper to ensure the rapid developments in the radio frequency wireless technology, the synthesis of frequencies for pervasive wireless applications is crucial by implementing the design of low voltage and low power Fractional-N phase locked loop (PLL) for controlling medical devices to monitor remotely patients. Design/methodology/approach The developments urge a technique reliable to phase noise in designing fractional-N PLL with a new eight transistor phase frequency detector and a good linearized charge pump (CP) for speed of operation with minimum mismatches. Findings In applications for portable wireless devices, by proposing a new phase-frequency detector with the removal of dead, blind zones and a modified CP to minimize the mismatch of currents. Originality/value The results are simulated in 45 nm complementary metal oxide semiconductor generic process design kit (GPDK) technology in cadence virtuoso. The phase noise of the proposed Fractiona-N phase locked loop has–93.18, –101.4 and –117 dBc/Hz at 10 kHz, 100 kHz and 1 MHz frequency offsets, respectively, and consumes 3.3 mW from a 0.45 V supply.


2022 ◽  
Vol 102 ◽  
pp. 37-45
Author(s):  
Issmat Shah Masoodi ◽  
Insha Ishteyaq ◽  
Khalid Muzaffar

Author(s):  
B. Rajasekar ◽  
G. Sashidhar Reddy ◽  
G. Naveen ◽  
M. Sugadev

Sign in / Sign up

Export Citation Format

Share Document