Trait selection matters! A study on European amphibian functional diversity patterns

2018 ◽  
Vol 34 (1) ◽  
pp. 225-234 ◽  
Author(s):  
Mariana A. Tsianou ◽  
Athanasios S. Kallimanis
2021 ◽  
Author(s):  
Jose Luis Poveda‐Cuellar ◽  
Edwin Orlando López Delgado ◽  
Pamela Tatiana Zúñiga‐Upegui ◽  
Francisco Antonio Villa Navarro

2018 ◽  
Vol 38 (16) ◽  
Author(s):  
王颖 WANG Ying ◽  
宗宁 ZONG Ning ◽  
何念鹏 HE Nianpeng ◽  
张晋京 ZHANG Jinjing ◽  
田静 TIAN Jing ◽  
...  

2021 ◽  
Author(s):  
Kenny Helsen ◽  
Yeng-Chen Shen ◽  
Tsung-Yi Lin ◽  
Chien-Fan Chen ◽  
Chu-Mei Huang ◽  
...  

While the relative importance of climate filtering is known to be higher for woody species assemblages than herbaceous assemblage, it remains largely unexplored whether this pattern is also reflected between the woody overstory and herbaceous understory of forests. While climatic variation will be more buffered by the tree layer, the understory might also respond more to small-scale soil variation, next to experiencing additional environmental filtering due to the overstory's effects on light and litter quality. For (sub)tropical forests, the understory often contains a high proportion of fern and lycophyte species, for which environmental filtering is even less well understood. We explored the proportional importance of climate proxies and soil variation on the species, functional trait and (functional) diversity patterns of both the forest overstory and fern and lycophyte understory along an elevational gradient from 850 to 2100 m a.s.l. in northern Taiwan. We selected nine functional traits expected to respond to soil nutrient or climatic stress for this study and furthermore verified whether they were positively related across vegetation layers, as expected when driven by similar environmental drivers. We found that climate was a proportionally more important predictor than soil for the species composition of both vegetation layers and trait composition of the understory. The stronger than expected proportional effect of climate for the understory was likely due to fern and lycophytes' higher vulnerability to drought, while the high importance of soil for the overstory seemed driven by deciduous species. The environmental drivers affected different response traits in both vegetation layers, however, which together with additional overstory effects on understory traits, resulted in a strong disconnection of community-level trait values across layers. Interestingly, species and functional diversity patterns could be almost exclusively explained by climate effects for both vegetational layers, with the exception of understory species richness. This study illustrates that environmental filtering can differentially affect species, trait and diversity patterns and can be highly divergent for forest overstory and understory vegetation, and should consequently not be extrapolated across vegetation layers or between composition and diversity patterns.


2017 ◽  
Author(s):  
Alejandro Ordonez ◽  
◽  
Jens-Christian Svenning ◽  
Jens-Christian Svenning

Sign in / Sign up

Export Citation Format

Share Document