Fine structure of diffused pseudobranchial neurosecretory cells associated with carotid labyrinth in an air-breathing catfishClarias batrachus

2014 ◽  
Vol 98 (2) ◽  
pp. 105-113 ◽  
Author(s):  
Manvendra Sengar ◽  
Laxmi Yadav ◽  
Anita Gopesh ◽  
Daniele Zaccone ◽  
Eugenia Rita Lauriano ◽  
...  
Parasitology ◽  
1981 ◽  
Vol 82 (3) ◽  
pp. 445-458 ◽  
Author(s):  
I. Fairweather ◽  
L. T. Threadgold

SUMMARYThe fine structure of the oncosphere of Hymenolepis nana has been investigated by transmission and scanning electron microscopy, together with light microscope observations of JB–4 embedded material. The outer surface of the oncosphere is covered by an epithelial layer, termed the embryonic epithelium. Cell types present within the oncosphere include the penetration gland cell, oncoblast, or hook-forming cells, nerve cells, muscle cells (both somatic and hook), and undifferentiated ‘stem’ cells. The penetration gland is a large, U-shaped structure, situated in the anterior region of the oncosphere, and filled with secretory granules of 2 distinct morphological types. Histochemically, the secretory material yields reactions characteristic of an acid mucopolysaccharide. A proteinaceous-substance and small amounts of glycogen are also present. Up to 4 pairs of ducts from the penetration gland have been observed. They pass through the basal lamina and the epithelial layer to open against the polar filament layer at the anterior end of the oncosphere. Nerve cells are described in a cestode oncosphere for the first time. The cells are paraldehyde-fuchsin-positive and show a high level of secretory activity, as evidenced by the large numbers of dense-cored vesicles produced by the Golgi apparatus in the perikarya; consequently, they are tentatively regarded as possible neurosecretory cells. The vesicles are transported down the axon to be stored in specialized swollen axon terminals, which form definite junctions with the muscle cells.


1969 ◽  
Vol 5 (3) ◽  
pp. 699-726
Author(s):  
LOWELL E. DAVIS

The differentiation of neurosensory cells in Hydra has been studied at the level of the electron microscope. These cells arise from interstitial cells (undifferentiated cells) and not from pre-existing nerve cells. Furthermore, there is no evidence to suggest that neurosensory cells represent a stage in the development of other nerve cells, i.e. ganglionic and neurosecretory cells. Major cytoplasmic changes in fine structure during differentiation include development of a cilium and associated structures (basal body, basal plate, rootlets), development of microtubules and at least two neurites, increase in Golgi lamellae and formation of dense droplets typical of neurosecretory droplets, structural variations in mitochondria and a decrease in the number of ribosomes. Granular endoplasmic reticulum is characteristically poorly developed in all stages of differentiation, including the mature neurosensory cell. Nuclear and nucleolar changes also occur during differentiation but these are less dramatic than the cytoplasmic events. The possibility of neurosensory cells being bi- or multiciliated and the presence of intercellular bridges between these cells are considered. The function of neurosensory cells is discussed briefly in relation to the function of the cilium and neurosecretory droplets.


1975 ◽  
Vol 53 (8) ◽  
pp. 1093-1100 ◽  
Author(s):  
C.-M. Yin ◽  
G. M. Chippendale

The fine structure of the neurosecretory (NS) cells of the frontal ganglion (FG) of diapause and non-diapause mature larvae of the southwestern corn borer, Diatraea grandiosella, was compared. Two large (15- to 20-μm diam) NS cells are typically found in each FG. Their cytoplasm stained deeply purple with paraldehyde fuchsin and contained granules 1500–2500 Å in diameter. The granules in the NS cells of non-diapause larvae were often associated with Golgi bodies whereas those of the diapause larvae were associated with dilated cisternae of the granular endoplasmic reticulum. Fewer Golgi bodies were observed in sections of NS cells of the FG of diapause larvae than in those of non-diapause larvae. Sections prepared from diapause larvae obtained conventionally by exposure to low temperatures, and experimentally by treatment with a juvenile hormone mimic, gave similar results.Our findings show that granules accumulate in the perikaryon of the NS cells of the FG of diapause larvae and suggest that the granular endoplasmic reticulum is involved in their formation. The shutdown of the transport of these NS granules from the FG appears to be a factor in some yet to be determined phase of the neuroendocrine regulation of diapause.


1979 ◽  
Vol 160 (2) ◽  
pp. 169-193 ◽  
Author(s):  
G. M. Hughes ◽  
J. S. Datta Munshi
Keyword(s):  

2010 ◽  
Vol 88 (12) ◽  
pp. 1149-1168 ◽  
Author(s):  
Elena N. Temereva

The digestive tract of actinotroch consists of the vestibulum, oesophagus, stomach with stomach diverticulum, midgut, and proctodaeum. Monociliate muscle cells resting on the basal lamina of the oesophagus form its circular musculature. The epithelium of the cardiac sphincter contains axonal tracts and neurosecretory cells. Glandular, secretory, and digestive cells form the epithelium of the stomach and stomach diverticulum. The epithelium of the midgut is biciliate. The proctodaeum is divided into two parts, differing in fine structure and function. Individual serotonian and FMRFamide neurons and fibers occur in the oesophagus, cardiac sphincter, and midgut, as well as surrounding the anus. In larvae of Phoronopsis harmeri Pixell, 1912 during metamorphosis, the larval oesophagus gives rise to the juvenile oesohagus, the upper portion of the stomach stretches and transforms into prestomach, the stomach diverticulum moves into the stomach and then is digested, the larval stomach becomes the juvenile stomach, the midgut gives rise to the pyloric region, and the proctodaeum transforms into the ascending branch of the juvenile digestive tract. The data do not support the views that the proximal part of adult digestive tract forms from the ectodermal epithelium of the dorsal and ventral epidermis of the larva or that the telotroch enters the intestine during metamorphosis.


Sign in / Sign up

Export Citation Format

Share Document