scholarly journals Larval host plant influences male body size and mating success in a tephritid fruit fly

2018 ◽  
Vol 166 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Todd E. Shelly
2015 ◽  
Vol 23 (6) ◽  
pp. 869-880 ◽  
Author(s):  
Giovanni Benelli ◽  
Elisa Donati ◽  
Donato Romano ◽  
Giacomo Ragni ◽  
Gabriella Bonsignori ◽  
...  

2007 ◽  
Vol 73 (6) ◽  
pp. 987-997 ◽  
Author(s):  
M.A. Serrano-Meneses ◽  
A. Córdoba-Aguilar ◽  
V. Méndez ◽  
S.J. Layen ◽  
T. Székely

2018 ◽  
Vol 29 (3) ◽  
pp. 769-777 ◽  
Author(s):  
Juan Pablo Busso ◽  
Wolf U Blanckenhorn

Abstract Sexual selection has 2 main components, female preference and male–male competition, which can lead males to adopt alternative reproductive tactics to optimize their reproductive success. Two traits that significantly influence reproductive success are body size and coloration, as they can facilitate access to females through male contests or as female attractors. We investigated whether, and if so which mechanism of sexual selection contributes to the maintenance, and possibly even the establishment, of 2 almost discrete male morphs in the polyphenic black scavenger fly Sepsis thoracica (Diptera: Sepsidae): small and black, or large and amber. We performed 2 complementary laboratory experiments to evaluate the mating success of the different male morphs and the behaviors (of both males and females) presumably mediating their mating success. We found evidence for intraspecific disruptive sexual selection on male body size that is mediated by male–male interactions, and significant positive directional selection on body size that interacted with (directional) selection on coloration, likely contributing to the origin and/or maintenance of the threshold relationship between the 2 traits in this species. The simultaneous occurrence of disruptive selection and polyphenism in S. thoracica supports the role of sexual selection in the intraspecific diversification of coupled traits (here body size and coloration), which could be a speciation starting point.


2002 ◽  
Vol 80 (9) ◽  
pp. 1584-1587 ◽  
Author(s):  
Albrecht I Schulte-Hostedde ◽  
John S Millar

Male-biased sexual size dimorphism in mammals is usually attributed to the success of large males in intrasexual combat for mates. However, mating success may be determined by contests that are not combative. In the mating chase of the yellow-pine chipmunk (Tamias amoenus), a mammalian species with female-biased sexual size dimorphism, fast males may have an advantage in acquiring matings with estrous females. However, the effects of intraspecific variation in body size on running speed are not obvious; heavy individuals may run more slowly than light individuals because excess mass can be a hindrance to locomotion, but individuals that are structurally large may run faster than small individuals because of longer stride length. We examined the effects of both body mass and structural size on running speed in male yellow-pine chipmunks using manipulated runs in which male chipmunks were chased over a known distance. Structurally large male chipmunks had faster running speeds than small males, potentially giving large males an advantage when chasing estrous females. However, small male chipmunks are known to be aggressively dominant over large males. This leads to a potential trade-off in male body size between two behavioural components of mating success (running speed and dominance) that may constrain the evolution of male body size, ultimately leading to female-biased sexual size dimorphism.


Ecography ◽  
1988 ◽  
Vol 11 (4) ◽  
pp. 280-285 ◽  
Author(s):  
Alexander S. Flecker ◽  
J. David Allan ◽  
Nancy L. McClintock

2013 ◽  
Vol 96 ◽  
pp. 20-26 ◽  
Author(s):  
Carlos Passos ◽  
Bettina Tassino ◽  
Marcelo Loureiro ◽  
Gil G. Rosenthal

Sign in / Sign up

Export Citation Format

Share Document