sexual size dimorphism
Recently Published Documents


TOTAL DOCUMENTS

911
(FIVE YEARS 118)

H-INDEX

64
(FIVE YEARS 4)

Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jessica M. Vannatta ◽  
Brian D. Carver

Abstract Sexual size dimorphism is common in many taxa and results from various pressures, including competition, reproductive requirements, functional differences, and sexual recognition. For mammals, males are typically the larger sex; however, for vespertilionid bats, females are more often the larger sex. Forearm length, a feature that influences overall wing and body size and is often sexually dimorphic, is a standard morphological measurement taken from bats. Forearm length was measured in two vesper bat species (Corynorhinus rafinesquii and Myotis austroriparius) that co-occur across much of the southeastern United States. Forearm length was greater in females of both species, and females of both species also exhibited regional variation in forearm length. By having a longer forearm and therefore being larger in size, females may be more maneuverable and better equipped to carry young. While this study did not directly investigate the mechanisms behind regional variation in forearm length, it is possible this is the result of variability in habitat types, resources, or thermodynamic constraints. Knowledge of sexually dimorphic characteristics is important for obtaining a general understanding of a species and its morphology.


Fishes ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 79
Author(s):  
Binbin Shan ◽  
Yan Liu ◽  
Changping Yang ◽  
Yuan Li ◽  
Liangming Wang ◽  
...  

Sexual growth dimorphism is a common phenomenon in teleost fish. However, the mechanism of this complex phenomenon remains unclear. The fine-patterned puffer (Takifugu poecilonotus; Temminck and Schlegel, 1850) exhibits female-biased sexual size dimorphism similar to other pufferfish. In this study, the transcriptomes of female and male T. poecilonotus were sequenced, 285.95 million raw read pairs were generated from sequence libraries. After identification and assembly, a total of 149,814 nonredundant unigenes were obtained with an N50 length of 3538 bp. Of these candidates, 122,719 unigenes (81.91% of the total) were successfully annotated with multiple public databases. The comparison analysis revealed 10,385 unigenes (2034 in females and 8351 in males) were differentially expressed between different sexes of T. poecilonotus. Then, we identified many candidate growth- and sex-related genes, including Dmrt1, Sox3, Spatas, Prl/Prlr, fabps, Ghr, and Igf1r. In addition to these well-known genes, Fabp4 was identified for the first time in fish. Furthermore, 68,281 simple sequence repeats (SSRs) loci were screened and identified in the transcriptome sequence of T. poecilonotus. The results of our study could provide valuable information on growth- and sex-associated genes and facilitate further exploration of the molecular mechanism of sexual growth dimorphism.


Author(s):  
Na Wang ◽  
Qian Yang ◽  
Jialin Wang ◽  
Rui Shi ◽  
Ming Li ◽  
...  

Sexual size dimorphism (SSD) is the difference in segments or body size between sexes prevalent in various species. Understanding the genetic architecture of SSD has remained a significant challenge owing to the complexity of growth mechanisms and the sexual influences among species. The Chinese tongue sole (Cynoglossus semilaevis), which exhibits a female-biased SSD and sex reversal from female to pseudomale, is an ideal model for exploring SSD mechanism at the molecular level. The present study aimed to integrate transcriptome and methylome analysis to unravel the genetic and epigenetic changes in female, male, and pseudomale C. semilaevis. The somatotropic and reproductive tissues (brain, liver, gonad, and muscle) transcriptomes were characterized by RNA-seq technology. Transcriptomic analysis unravelled numerous differentially expressed genes (DEGs) involved in cell growth and death-related pathways. The gonad and muscle methylomes were further employed for screening differentially methylated genes (DMGs). Relatively higher DNA methylation levels were observed in the male and pseudomale individuals. In detail, hypermethylation of the chromosome W was pronounced in the pseudomale group than in the female group. Furthermore, weighted gene co-expression network analysis showed that turquoise and brown modules positively and negatively correlated with the female-biased SSD, respectively. A combined analysis of the module genes and DMGs revealed the female-biased mRNA transcripts and hypomethylated levels in the upstream and downstream regions across the cell cycle-related genes. Moreover, the male and pseudomale-biased gene expression in the hippo signaling pathway were positively correlated with their hypermethylation levels in the gene body. These findings implied that the activation of the cell cycle and the inhibition of the hippo signaling pathway were implicated in C. semilaevis female-biased SSD. In addition, the dynamic expression pattern of the epigenetic regulatory factors, including dnmt1, dnmt3a, dnmt3b, and uhrf1, among the different sexes correspond with their distinct DNA methylation levels. Herein, we provide valuable clues for understanding female-biased SSD in C. semilaevis.


Biology Open ◽  
2021 ◽  
Vol 10 (12) ◽  
Author(s):  
Fan Zhang ◽  
Xiaoqiong Chen ◽  
Chi Zeng ◽  
Lelei Wen ◽  
Yao Zhao ◽  
...  

ABSTRACT Sexual size dimorphism (SSD) is a notable phenomenon in terrestrial animals, and it is correlated with unusual morphological traits. To date, the underlying sex-specific growth strategies throughout the ontogenetic stage of spiders are poorly understood. Here, we comprehensively investigated how the growth trajectories and gonad development shaped SSD in the wolf spider Pardosa pseudoannulata (Araneae: Lycosidae). We also hypothesized the potential growth allometry among the carapace, abdomen, and gonads of spiders in both sexes. By measuring the size of the carapace and abdomen, investigating developmental duration and growth rate, describing the gonadal sections, and calculating the area of gonads at all instars from hatching to maturity, we demonstrated that SSD results from sex-specific growth strategies. Our results indicated that the growth and developmental differences between both sexes appeared at early life stages, and there was allometric growth in the carapace, abdomen, and gonads between males and females.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Judit Mokos ◽  
István Scheuring ◽  
András Liker ◽  
Robert P. Freckleton ◽  
Tamás Székely

AbstractMales and females often display different behaviours and, in the context of reproduction, these behaviours are labelled sex roles. The Darwin–Bateman paradigm argues that the root of these differences is anisogamy (i.e., differences in size and/or function of gametes between the sexes) that leads to biased sexual selection, and sex differences in parental care and body size. This evolutionary cascade, however, is contentious since some of the underpinning assumptions have been questioned. Here we investigate the relationships between anisogamy, sexual size dimorphism, sex difference in parental care and intensity of sexual selection using phylogenetic comparative analyses of 64 species from a wide range of animal taxa. The results question the first step of the Darwin–Bateman paradigm, as the extent of anisogamy does not appear to predict the intensity of sexual selection. The only significant predictor of sexual selection is the relative inputs of males and females into the care of offspring. We propose that ecological factors, life-history and demography have more substantial impacts on contemporary sex roles than the differences of gametic investments between the sexes.


2021 ◽  
Vol 17 (9) ◽  
pp. 20210251
Author(s):  
Tim Janicke ◽  
Salomé Fromonteil

Sexual selection is often considered as a critical evolutionary force promoting sexual size dimorphism (SSD) in animals. However, empirical evidence for a positive relationship between sexual selection on males and male-biased SSD received mixed support depending on the studied taxonomic group and on the method used to quantify sexual selection. Here, we present a meta-analytic approach accounting for phylogenetic non-independence to test how standardized metrics of the opportunity and strength of pre-copulatory sexual selection relate to SSD across a broad range of animal taxa comprising up to 95 effect sizes from 59 species. We found that SSD based on length measurements was correlated with the sex difference in the opportunity for sexual selection but showed a weak and statistically non-significant relationship with the sex difference in the Bateman gradient. These findings suggest that pre-copulatory sexual selection plays a limited role for the evolution of SSD in a broad phylogenetic context.


2021 ◽  
Vol 5 (10) ◽  
pp. 1394-1402
Author(s):  
Philipp Kaufmann ◽  
Matthew E. Wolak ◽  
Arild Husby ◽  
Elina Immonen

Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 738
Author(s):  
An Yen ◽  
Hsiao-Jou Wu ◽  
Pin-Yi Chen ◽  
Hon-Tsen Yu ◽  
Jia-Yang Juang

Finite element analysis (FEA) was used to conduct mechanical analyses on eggshells of giant birds, and relate this to the evolution and reproductive behavior of avian species. We aim to (1) investigate mechanical characteristics of eggshell structures of various ratite species, enabling comparisons between species with or without reversed sexual size dimorphism (RSSD); (2) quantify the safety margin provided by RSSD; (3) determine whether the Williams’ egg can have been incubated by an extinct giant bird Genyornis newtoni; (4) determine the theoretical maximum body mass for contact incubation. We use a dimensionless number C to quantify relative shell stiffness with respect to the egg size, allowing for comparison across wide body masses. We find that RSSD in moas significantly increases the safety margin of contact incubation by the lighter males. However, their safety margins are still smaller than those of the moa species without RSSD. Two different strategies were adopted by giant birds—one is RSSD and thinner shells, represented by some moa species; the other is no RSSD and regular shells, represented by the giant elephant bird. Finally, we predicted that the upper limit of body mass for contact incubation was 2000 kg.


2021 ◽  
pp. 1-7
Author(s):  
Ken S. Toyama ◽  
Christopher K. Boccia

Abstract Opposing life history strategies are a common result of the different ecological settings experienced by insular and continental species. Here we present a comprehensive compilation of data on sexual size dimorphism (SSD) and life history traits of Microlophus, a genus of lizards distributed in western South America and the Galápagos Islands, and test for differences between insular and continental species under life history theory expectations. Contrary to our predictions, we found no differences in SSD between localities or evidence that Microlophus follows Rensch’s rule. However, as expected, head dimensions and maturity sizes were significantly larger in insular species while continental species had larger clutches. Our results show that Microlophus exhibits some of the patterns expected from an island-mainland system, but unexplained patterns will only be resolved through future ecological, morphological and behavioural studies integrating both faunas.


Sign in / Sign up

Export Citation Format

Share Document