reproductive success
Recently Published Documents





2022 ◽  
Vol 12 ◽  
Arjun Adit ◽  
Vineet Kumar Singh ◽  
Monika Koul ◽  
Rajesh Tandon

Consumption of pollination reward by felonious means in a plant species can influence the foraging behavior of its pollinator and eventually the reproductive success. So far, studies on this aspect are largely confined to interaction involving plant-pollinators and nectar robbers or thieves. However, a foraging guild in such interactions may also include floral herbivores or florivores. There is a paucity of information on the extent to which nectar larcenists may influence the foraging behavior of the pollinator and reproductive fitness of plants in the presence of a florivore. We investigated various forms of larceny in the natural populations of Aerides odorata, a pollinator-dependent and nectar-rewarding orchid. These populations differed in types of foraging guild, the extent of larceny (thieving/robbing), which can occur with or without florivory, and natural fruit-set pattern. The nectariferous spur of the flower serves as an organ of interest among the foraging insects. While florivory marked by excision of nectary dissuades the pollinator, nectar thieving and robbing significantly enhance visits of the pollinator and fruit-set. Experimental pollinations showed that the species is a preferential outbreeder and experiences inbreeding depression from selfing. Reproductive fitness of the orchid species varies significantly with the extent of floral larceny. Although nectar thieving or robbing is beneficial in this self-compatible species, the negative effects of florivory were stronger. Our findings suggest that net reproductive fitness in the affected plant species is determined by the overarching effect of its breeding system on the overall interacting framework of the foraging guild.

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 231
Melissah Rowe ◽  
Annabel van Oort ◽  
Lyanne Brouwer ◽  
Jan T. Lifjeld ◽  
Michael S. Webster ◽  

Sperm competition is thought to impose strong selection on males to produce competitive ejaculates to outcompete rival males under competitive mating conditions. Our understanding of how different sperm traits influence fertilization success, however, remains limited, especially in wild populations. Recent literature highlights the importance of incorporating multiple ejaculate traits and pre-copulatory sexually selected traits in analyses aimed at understanding how selection acts on sperm traits. However, variation in a male’s ability to gain fertilization success may also depend upon a range of social and ecological factors that determine the opportunity for mating events both within and outside of the social pair-bond. Here, we test for an effect of sperm quantity and sperm size on male reproductive success in the red-back fairy-wren (Malurus melanocephalus) while simultaneously accounting for pre-copulatory sexual selection and potential socio-ecological correlates of male mating success. We found that sperm number (i.e., cloacal protuberance volume), but not sperm morphology, was associated with reproductive success in male red-backed fairy-wrens. Most notably, males with large numbers of sperm available for copulation achieved greater within-pair paternity success. Our results suggest that males use large sperm numbers as a defensive strategy to guard within-pair paternity success in a system where there is a high risk of sperm competition and female control of copulation. Finally, our work highlights the importance of accounting for socio-ecological factors that may influence male mating opportunities when examining the role of sperm traits in determining male reproductive success.

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 165
Mariya N. Erofeeva ◽  
Galina S. Alekseeva ◽  
Mariya D. Kim ◽  
Pavel A. Sorokin ◽  
Sergey V. Naidenko

Inbreeding and low diversity in MHC genes are considered to have a negative effect on reproductive success in animals. This study presents an analysis of the number and body mass of offspring in domestic cat, depending on the inbreeding coefficient and the degree of similarity in MHC genes of class I and II in parents. Inbred partners had a lower number of live kittens at birth than outbred ones. At the same time, the inbreeding coefficient did not affect the litter size and the number of offspring who survived until the period of transition to solid food. The most significant predictor for the number of surviving offspring was the degree of parental similarity in MHC genes: the parents with the maximum distance in MHC genes had more survived kittens. Moreover, this effect was most pronounced immediately after birth. A significant percentage of kittens from parents with a minimum distance in MHC genes were either stillborn or died on the first day after birth. By the age of transition to solid food, this effect is no longer so pronounced. Furthermore, neither the inbreeding coefficient nor the distance in MHC genes of parents had any effect on the body mass of kittens.

Rainer Froese ◽  
Eva Papaioannou ◽  
Marco Scotti

AbstractClimate change and deoxygenation are affecting fish stocks on a global scale, but disentangling the impacts of these stressors from the effects of overfishing is a challenge. This study was conducted to distinguish between climate change and mismanagement as possible causes for the drastic decline in spawning stock size and reproductive success in cod (Gadus morhua) and herring (Clupea harengus) in the Western Baltic Sea, when compared with the good or satisfactory status and reproductive success of the other commercial species in the area. Available data on water temperature, wind speed, and plankton bloom during the spawning season did not reveal conclusive correlations between years with good and bad reproductive success of cod or herring. Notably, the other commercial species in the area have very similar life history traits suggesting similar resilience against stress caused by climate change or fishing. The study concludes that severe, sustained overfishing plus inappropriate size selectivity of the main fishing gears have caused the decline in spawning stock biomass of cod and herring to levels that are known to have a high probability of impaired reproductive success. It is pointed out that allowed catches were regulated by management and adhered to by the fishers, meaning that unregulated fishing did not occur. Thus, mismanagement (quotas that were too high and gears that selected too small sizes) and not climate change appears to be the primary cause of the bad status of cod and herring in the Western Baltic Sea.

2022 ◽  
Catriona H Walker ◽  
Alexander Ware ◽  
Jan Šimura ◽  
Karin Ljung ◽  
Zoe A Wilson ◽  

To maximise their reproductive success, flowering plants must correctly time their entry into and exit from the reproductive phase (flowering). While much is known about the mechanisms that regulate the initiation of flowering, the regulation of end-of-flowering remains largely uncharacterised. End-of-flowering in Arabidopsis thaliana consists of the quasi-synchronous arrest of individual inflorescences, but it is unclear how this arrest is correctly timed with respect to environmental stimuli and ongoing reproductive success. Here we show that Arabidopsis inflorescence arrest is a complex developmental phenomenon which includes a decline in size and cessation of activity in the inflorescence meristem (IM), coupled with a separable developmental arrest in all unopened floral primordia (floral arrest); these events occur well before the visible arrest of the inflorescence. We show that global removal of inflorescences can delay both IM arrest and floral arrest, but that local fruit removal only delays floral arrest, emphasising the separability of these processes. We test a role for cytokinin in regulating inflorescence arrest, and find that cytokinin treatment can delay arrest. We further show that gain-of-function cytokinin receptor hypersensitive mutants can delay floral arrest, and also IM arrest, depending on the expression pattern of the receptor; conversely, loss-of-function mutants prevent extension of flowering in response to inflorescence removal. Collectively, our data suggest that the dilution of cytokinin among an increasing number of sink organs leads to end-of-flowering in Arabidopsis by triggering IM and floral arrest, conversely meaning that a lack of reproductive success can homeostatically extend flowering in compensation.

2022 ◽  
Robin S Waples

1. The Wright-Fisher model, which directs how matings occur and how genes are transmitted across generations, has long been a lynchpin of evolutionary biology. This model is elegantly simple, analytically tractable, and easy to implement, but it has one serious limitation: essentially no real species satisfies its many assumptions. With growing awareness of the importance of jointly considering both ecology and evolution in eco-evolutionary models, this limitation has become more apparent, causing many researchers to search for more realistic simulation models. 2. A recently described variation retains most of the Wright-Fisher simplicity but provides greater flexibility to accommodate departures from model assumptions. This generalized Wright-Fisher model relaxes the assumption that all individuals have identical expected reproductive success by introducing a vector of parental weights w that specifies relative probabilities different individuals have of producing offspring. With parental weights specified this way, expectations of key demographic parameters are simple functions of w. This allows researchers to quantitatively predict the consequences of non-Wright-Fisher features incorporated into their models. 3. An important limitation of the Wright-Fisher model is that it assumes discrete generations, whereas most real species are age-structured. Here I show how an algorithm (THEWEIGHT) that implements the generalized Wright-Fisher model can be used to model evolution in age-structured populations with overlapping generations. Worked examples illustrate simulation of seasonal and lifetime reproductive success and show how the user can pick vectors of weights expected to produce a desired level of reproductive skew or a desired Ne/N ratio. Alternatively, weights can be associated with heritable traits to provide a simple, quantitative way to model natural selection. Using THEWEIGHT, it is easy to generate positive or negative correlations of individual reproductive success over time, thus allowing explicit modeling of common biological processes like skip breeding and persistent individual differences. 4. R code is provided to implement basic features of THEWEIGHT and applications described here. However, required coding changes to the Wright-Fisher model are modest, so the real value of the new algorithm is to encourage users to adopt its features into their own or others models.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 144
Sara Vali ◽  
Nava Majidiyan ◽  
Ahmad Mohamadi Yalsuyi ◽  
Mohammad Forouhar Vajargah ◽  
Marko D. Prokić ◽  

Nanoparticles (NPs) can display toxicological effects on aquatic organisms. This study investigates ecotoxicological effects of Ag-NPs on reproductive and blood parameters of adult common molly (Poecilia sphenops) and their larvae. During the LC50 96 h test, female fish were exposed to concentrations of 0, 5, 15, 25, 35, 45 and 60 mg L−1 of Ag-NPs, while larvae were exposed to 0, 3, 5, 10 and 15 mg L−1. Finally, we aim to evaluate the effects of 0, 5, 10 and 15 mg L−1 of Ag-NPs on parturition time, reproductive success and hematological parameters of the mature fish exposed to sub-lethal concentration during a 62-day period. We also evaluated the survival rate of larvae. The results show a positive correlation between mortality rate and Ag-NP concentration. Values for LC50 96 h in adult fish and larvae were 26.85 mg L−1 and 6.22 mg L−1, respectively. A lack of parturition and reproductive success were seen in fish that underwent chronic exposure to Ag-NPs (15 mg L−1). The results show that RBC, WBC and hematocrit were significantly decreased in fish exposed to Ag-NPs. In addition, the serum concentrations of total protein, albumin, cholesterol and triglycerides were significantly increased in fish submitted to Ag-NPs (concentrations of 5–15). In conclusion, submitting a fish to higher concentration than 10 mg L−1 has adverse effects on reproductive system and blood parameters.

Sign in / Sign up

Export Citation Format

Share Document