Review for "The Structural Basis of Accelerated Host Cell Entry by SARS‐CoV‐2 †"

Author(s):  
Jacques Fantini
FEBS Journal ◽  
2020 ◽  
Author(s):  
Murat Seyran ◽  
Kazuo Takayama ◽  
Vladimir N. Uversky ◽  
Kenneth Lundstrom ◽  
Giorgio Palù ◽  
...  

2013 ◽  
Vol 26 (3) ◽  
pp. 330-344 ◽  
Author(s):  
Furong Sun ◽  
Shiv D. Kale ◽  
Hugo F. Azurmendi ◽  
Dan Li ◽  
Brett M. Tyler ◽  
...  

Oomycetes such as Phytophthora sojae employ effector proteins that enter plant cells to facilitate infection. Entry of some effector proteins is mediated by RxLR motifs in the effectors and phosphoinositides (PIP) resident in the host plasma membrane such as phosphatidylinositol 3-phosphate (PtdIns(3)P). Recent reports differ regarding the regions on RxLR effectors involved in PIP recognition. We have structurally and functionally characterized the P. sojae effector, avirulence homolog-5 (Avh5). Using nuclear magnetic resonance (NMR) spectroscopy, we demonstrate that Avh5 is helical in nature, with a long N-terminal disordered region. NMR titrations of Avh5 with the PtdIns(3)P head group, inositol 1,3-bisphosphate, directly identified the ligand-binding residues. A C-terminal lysine-rich helical region (helix 2) was the principal lipid-binding site, with the N-terminal RxLR (RFLR) motif playing a more minor role. Mutations in the RFLR motif affected PtdIns(3)P binding, while mutations in the basic helix almost abolished it. Mutations in the RFLR motif or in the basic region both significantly reduced protein entry into plant and human cells. Both regions independently mediated cell entry via a PtdIns(3)P-dependent mechanism. Based on these findings, we propose a model where Avh5 interacts with PtdIns(3)P through its C terminus, and by binding of the RFLR motif, which promotes host cell entry.


2019 ◽  
Vol 116 (43) ◽  
pp. 21514-21520 ◽  
Author(s):  
Alice J. Stelfox ◽  
Thomas A. Bowden

The bat-borne paramyxovirus, Sosuga virus (SosV), is one of many paramyxoviruses recently identified and classified within the newly established genus Pararubulavirus, family Paramyxoviridae. The envelope surface of SosV presents a receptor-binding protein (RBP), SosV-RBP, which facilitates host-cell attachment and entry. Unlike closely related hemagglutinin neuraminidase RBPs from other genera of the Paramyxoviridae, SosV-RBP and other pararubulavirus RBPs lack many of the stringently conserved residues required for sialic acid recognition and hydrolysis. We determined the crystal structure of the globular head region of SosV-RBP, revealing that while the glycoprotein presents a classical paramyxoviral six-bladed β-propeller fold and structurally classifies in close proximity to paramyxoviral RBPs with hemagglutinin-neuraminidase (HN) functionality, it presents a receptor-binding face incongruent with sialic acid recognition. Hemadsorption and neuraminidase activity analysis confirms the limited capacity of SosV-RBP to interact with sialic acid in vitro and indicates that SosV-RBP undergoes a nonclassical route of host-cell entry. The close overall structural conservation of SosV-RBP with other classical HN RBPs supports a model by which pararubulaviruses only recently diverged from sialic acid binding functionality.


Science ◽  
2014 ◽  
Vol 346 (6208) ◽  
pp. 473-477 ◽  
Author(s):  
Indranil Banerjee ◽  
Yasuyuki Miyake ◽  
Samuel Philip Nobs ◽  
Christoph Schneider ◽  
Peter Horvath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document