cell attachment
Recently Published Documents


TOTAL DOCUMENTS

2360
(FIVE YEARS 491)

H-INDEX

114
(FIVE YEARS 12)

Author(s):  
Anamar Miranda ◽  
Damien Seyer ◽  
Carla Palomino-Durand ◽  
Houda Morakchi-Goudjil ◽  
Mathilde Massonie ◽  
...  

The success of stable and long-term implant integration implies the promotion, control, and respect of the cell microenvironment at the site of implantation. The key is to enhance the implant–host tissue cross talk by developing interfacial strategies that guarantee an optimal and stable seal of soft tissue onto the implant, while preventing potential early and late infection. Indeed, implant rejection is often jeopardized by lack of stable tissue surrounding the biomaterial combined with infections which reduce the lifespan and increase the failure rate of implants and morbidity and account for high medical costs. Thin films formed by the layer-by-layer (LbL) assembly of oppositely charged polyelectrolytes are particularly versatile and attractive for applications involving cell–material contact. With the combination of the extracellular matrix protein fibronectin (Fn, purified from human plasma) and poly-L-lysine (PLL, exhibiting specific chain lengths), we proposed proactive and biomimetic coatings able to guarantee enhanced cell attachment and exhibiting antimicrobial properties. Fn, able to create a biomimetic interface that could enhance cell attachment and promote extracellular cell matrix remodeling, is incorporated as the anionic polymer during film construction by the LbL technic whereas PLL is used as the cationic polymer for its capacity to confer remarkable antibacterial properties.


2022 ◽  
Author(s):  
Roya Sajed ◽  
Amir‐Hassan Zarnani ◽  
Zahra Madjd ◽  
Soheila Arefi ◽  
Mohammad Reza Bolouri ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Anh Tong ◽  
Roman Voronov

In 2020, nearly 107,000 people in the U.S needed a lifesaving organ transplant, but due to a limited number of donors, only ∼35% of them have actually received it. Thus, successful bio-manufacturing of artificial tissues and organs is central to satisfying the ever-growing demand for transplants. However, despite decades of tremendous investments in regenerative medicine research and development conventional scaffold technologies have failed to yield viable tissues and organs. Luckily, microfluidic scaffolds hold the promise of overcoming the major challenges associated with generating complex 3D cultures: 1) cell death due to poor metabolite distribution/clearing of waste in thick cultures; 2) sacrificial analysis due to inability to sample the culture non-invasively; 3) product variability due to lack of control over the cell action post-seeding, and 4) adoption barriers associated with having to learn a different culturing protocol for each new product. Namely, their active pore networks provide the ability to perform automated fluid and cell manipulations (e.g., seeding, feeding, probing, clearing waste, delivering drugs, etc.) at targeted locations in-situ. However, challenges remain in developing a biomaterial that would have the appropriate characteristics for such scaffolds. Specifically, it should ideally be: 1) biocompatible—to support cell attachment and growth, 2) biodegradable—to give way to newly formed tissue, 3) flexible—to create microfluidic valves, 4) photo-crosslinkable—to manufacture using light-based 3D printing and 5) transparent—for optical microscopy validation. To that end, this minireview summarizes the latest progress of the biomaterial design, and of the corresponding fabrication method development, for making the microfluidic scaffolds.


2022 ◽  
Author(s):  
Yong Cheol Shin ◽  
Ji-Hyeon Bae ◽  
Jong Ho Lee ◽  
Iruthayapandi Selestin Raja ◽  
Moon Sung Kang ◽  
...  

Abstract Background: The implants of pure titanium (Ti) and its alloys can lead to implant failure because of their poor interaction with bone-associated cells during bone regeneration. Surface modification over implants has achieved successful implants for enhanced osseointegration.Methods: Herein, we prepared sandblasted, large-grit, and acid-etched (SLA) Ti (ST) implants with different surface modifications [i.e., reduced graphene oxide (rGO) and recombinant human bone morphogenetic protein-2 (rhBMP-2)] and investigated their dental tissue regenerating ability in animal models. We performed comparative studies in surface property, in vitro cellular behaviors, and in vivo osseointegration activity among different groups, including ST (control), rhBMP-2-immobilized ST (BI-ST), rhBMP-2-treated ST (BT-ST), and rGO-coated ST (R-ST).Results: Spectroscopic, diffractometric, and microscopic analyses confirmed that rGO was coated well around the surfaces of Ti discs (for cell study) and implant fixtures (for animal study). Furthermore, in vitro and in vivo studies revealed that the R-ST group showed significantly better effects in cell attachment and proliferation, alkaline phosphatase activity, matrix mineralization, and osseointegration than the control (ST), BI-ST, and BT-ST groups.Conclusion: Hence, we suggest that the rGO-coated Ti can be a promising candidate for the application to dental or even orthopedic implants due to its ability to accelerate the healing rate with the high potential of osseointegration.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Irish Valerie B. Maggay ◽  
Hana Nur Aini ◽  
Mary Madelaine G. Lagman ◽  
Shuo-Hsi Tang ◽  
Ruth R. Aquino ◽  
...  

This study introduces a zwitterionic material to modify polysulfone (PSf) membranes formed by a dual bath procedure, in view of reducing their fouling propensity. The zwitterionic copolymer, derived from a random polymer of styrene and 4-vinylpyrridine and referred to as zP(S-r-4VP), was incorporated to the PSf solution without any supplementary pore-forming additive to study the effect of the sole copolymer on membrane-structuring, chemical, and arising properties. XPS and mapping FT-IR provided evidence of the modification. Macrovoids appeared and then disappeared as the copolymer content increased in the range 1–4 wt%. The copolymer has hydrophilic units and its addition increases the casting solution viscosity. Both effects play an opposite role on transfers, and so on the growth of macrovoids. Biofouling tests demonstrated the efficiency of the copolymer to mitigate biofouling with a reduction in bacterial and blood cell attachment by more than 85%. Filtration tests revealed that the permeability increased by a twofold factor, the flux recovery ratio was augmented from 40% to 63% after water/BSA cycles, and irreversible fouling was reduced by 1/3. Although improvements are needed, these zwitterionic PSf membranes could be used in biomedical applications where resistance to biofouling by cells is a requirement.


Author(s):  
Jing Xia ◽  
Zong-Yuan Liu ◽  
Zheng-Yuan Han ◽  
Yuan Yuan ◽  
Yue Shao ◽  
...  

2022 ◽  
Vol 2160 (1) ◽  
pp. 012014
Author(s):  
Le Zheng ◽  
Shuangshuang Zheng ◽  
Zilong Chen ◽  
Xiangqin Li ◽  
Chunyan Liu ◽  
...  

Abstract Scaffolds from tissues or organs have nanoscale microstructures. Derived matrix scaffolds prepared by decellularized method can provide more cell attachment sites, which is conducive to cell adhesion, proliferation, differentiation and other physiological activities on scaffolds. In this study, the sheep kidney decellularized matrix scaffold was prepared by the method of decellularization. Due to the poor mechanical properties of the decellularized matrix, the cross linking method was adopted to enhance its mechanical properties. The decellularization efficiency of sheep renal matrix scaffolds was observed by scanning electron microscopy and histological staining, and the biocompatibility of the scaffolds was investigated by inoculating adipose derived stem cells. It was found that the scaffold had good decellularization effect and good pore structure.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 96
Author(s):  
Kristina Peranidze ◽  
Tatiana V. Safronova ◽  
Nataliya R. Kildeeva

Currently, the significantly developing fields of tissue engineering related to the fabrication of polymer-based materials that possess microenvironments suitable to provide cell attachment and promote cell differentiation and proliferation involve various materials and approaches. Biomimicking approach in tissue engineering is aimed at the development of a highly biocompatible and bioactive material that would most accurately imitate the structural features of the native extracellular matrix consisting of specially arranged fibrous constructions. For this reason, the present research is devoted to the discussion of promising fibrous materials for bone tissue regeneration obtained by electrospinning techniques. In this brief review, we focus on the recently presented natural and synthetic polymers, as well as their combinations with each other and with bioactive inorganic incorporations in order to form composite electrospun scaffolds. The application of several electrospinning techniques in relation to a number of polymers is touched upon. Additionally, the efficiency of nanofibrous composite materials intended for use in bone tissue engineering is discussed based on biological activity and physiochemical characteristics.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 30
Author(s):  
Yang Gao ◽  
Xingchen Huo ◽  
Zhensheng Wang ◽  
Gailing Yuan ◽  
Xiaoling Liu ◽  
...  

Grass carp reovirus (GCRV) is a severe virus that causes great losses to grass carp culture every year, and GCRV-II is the current popular and fatal strain. VP56, fibrin on the outer surface of GCRV-II, mediates cell attachment. In this study, we firstly divided the VP56 gene into four fragments to screen the optimal antigen by enzyme-linked immunosorbent assay and neutralizing antibody methods. The second fragment VP56-2 demonstrates the optimal efficiency and was employed as an antigen in the following experiments. Bacillus subtilis were used as a carrier, and VP56-2 was expressed on the surface of the spores. Then, we performed the oral immunization for grass carp and the challenge with GCRV-II. The survival rate was remarkably raised, and mRNA expressions of IgM were significantly up-regulated in spleen and head kidney tissues in the B. s-CotC-VP56-2 group. Three crucial immune indexes (complement C3, lysozyme and total superoxide dismutase) in the sera were also significantly enhanced. mRNA expressions of four important genes (TNF-α, IL-1β, IFN1 and MHC-II) were significantly strengthened. Tissue lesions were obviously attenuated by histopathological slide examination in trunk kidney and spleen tissues. Tissue viral burdens were significantly reduced post-viral challenge. These results indicated that the oral recombinant B. subtilis VP56-2 subunit vaccine is effective for controlling GCRV infection and provides a feasible strategy for the control of fish virus diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yuan-Tsan Tseng ◽  
Nabil F. Grace ◽  
Heba Aguib ◽  
Padmini Sarathchandra ◽  
Ann McCormack ◽  
...  

The success of tissue-engineered heart valves rely on a balance between polymer degradation, appropriate cell repopulation, and extracellular matrix (ECM) deposition, in order for the valves to continue their vital function. However, the process of remodeling is highly dynamic and species dependent. The carbon fibers have been well used in the construction industry for their high tensile strength and flexibility and, therefore, might be relevant to support tissue-engineered hearts valve during this transition in the mechanically demanding environment of the circulation. The aim of this study was to assess the suitability of the carbon fibers to be incorporated into tissue-engineered heart valves, with respect to optimizing their cellular interaction and mechanical flexibility during valve opening and closure. The morphology and surface oxidation of the carbon fibers were characterized by scanning electron microscopy (SEM). Their ability to interact with human adipose-derived stem cells (hADSCs) was assessed with respect to cell attachment and phenotypic changes. hADSCs attached and maintained their expression of stem cell markers with negligible differentiation to other lineages. Incorporation of the carbon fibers into a stand-alone tissue-engineered aortic root, comprised of jet-sprayed polycaprolactone aligned carbon fibers, had no negative effects on the opening and closure characteristics of the valve when simulated in a pulsatile bioreactor. In conclusion, the carbon fibers were found to be conducive to hADSC attachment and maintaining their phenotype. The carbon fibers were sufficiently flexible for full motion of valvular opening and closure. This study provides a proof-of-concept for the incorporation of the carbon fibers into tissue-engineered heart valves to continue their vital function during scaffold degradation.


Sign in / Sign up

Export Citation Format

Share Document