Fatigue crack growth simulation of interacting multiple cracks in perforated plates with multiple holes using boundary cracklet method

2020 ◽  
Vol 44 (2) ◽  
pp. 333-348
Author(s):  
Talal Ahmed ◽  
Abdulkadir Yavuz ◽  
Halit S. Turkmen
Author(s):  
Ayaka Suzuki ◽  
Akiyuki Takahashi ◽  
Masanori Kikuchi

Fatigue crack growth simulation using the s-version finite element method (FEM) is presented. Two subsurface cracks are aligned in the depth direction of a specimen, and is subjected to a cyclic tension-tension loading. The fatigue crack growth behavior of the cracks is directly simulated using our automatic fatigue crack growth simulation system with the s-version FEM. Along with the direct simulation, proximity rules for crack combinations and surface cracks are used in the s-version FEM simulation. The numerical results with and without the application of the proximity rules are compared to make a validation of the application of the proximity rules in the evaluation of fatigue crack growth behaviors and residual fatigue life. The results clearly illustrate that the proximity rules accelerate the fatigue crack growth rate, and provide us with a substantially conservative evaluation. Finally, the proximity rules are slightly modified for making better approximation of combining and surface cracks. It can be found that the new proximity rules are able to give a fatigue crack growth evaluation closer to the direct simulation results.


2003 ◽  
Vol 2003 (0) ◽  
pp. 307-308
Author(s):  
Toshiyuki MESHII ◽  
Kenichi ISHIHARA ◽  
Katsuhiko WATANABE

2019 ◽  
Vol 11 (4) ◽  
pp. 547-555
Author(s):  
Shuji Tomaru ◽  
Akiyuki Takahashi

Purpose Since the most of structures and structural components suffers from cyclic loadings, the study on the fatigue failure due to the crack growth has a great importance. The purpose of this paper is to present a three-dimensional fatigue crack growth simulation of embedded cracks using s-version finite element method (SFEM). Using the numerical results, the validity of the fitness-for-service (FFS) code evaluation method is verified. Design/methodology/approach In this paper, three-dimensional fatigue crack propagation analysis of embedded cracks is performed using the SFEM. SFEM is a numerical analysis method in which the shape of the structure is represented by a global mesh, and cracks are modeled by local meshes independently. The independent global and local meshes are superimposed to obtain the displacement solution of the problem simultaneously. Findings The fatigue crack growth of arbitrary shape of cracks is slow compared to that of the simplified circular crack and the crack approximated based on the FFS code of the Japan Society of Mechanical Engineers (JSME). The results tell us that the FFS code of JSME can provide a conservative evaluation of the fatigue crack growth and the residual life time. Originality/value This paper presents a three-dimensional fatigue crack growth simulation of embedded cracks using SFEM. Using this method, it is possible to apply mixed mode loads to complex shaped cracks that are closer to realistic conditions.


Sign in / Sign up

Export Citation Format

Share Document