multiple cracks
Recently Published Documents


TOTAL DOCUMENTS

582
(FIVE YEARS 107)

H-INDEX

33
(FIVE YEARS 5)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7455
Author(s):  
Shakeel Ahmed ◽  
Abasal Hussain ◽  
Zahoor Hussain ◽  
Zhang Pu ◽  
Krzysztof Adam Ostrowski ◽  
...  

The effect of combining filler (carbon black) and fibrous materials (steel fiber and polypropylene fiber) with various sizes of coarse particles on the post-cracking behavior of conductive concrete was investigated in this study. Steel fibers (SF) and carbon black (CB) were added as monophasic, diphasic, and triphasic materials in the concrete to enhance the conductive properties of reinforced concrete. Polypropylene fiber (PP) was also added to steel fiber and carbon to improve the post-cracking behavior of concrete beams. This research mainly focused on the effects of macro fibers on toughness parameters and energy absorption capacity, as well as enhancing the self-sensing of multiple cracks and post-cracking behavior. Fractional changes in resistance and crack opening displacement (COD-FCR) and the relationship of load-deflection-FCR with different coarse aggregates of (5–10 mm and 15–20 mm) sizes were investigated, and the law of resistance signal changes with single and multiple cracking through load-time-FCR curves was explored. Results indicated that the smaller size coarse aggregates (5–10 mm) showed higher compressive strength: up to 8.3% and 14.83% with diphasic (SF + CB), respectively. The flexural strength of PC-10 increased 22.60 and 51.2%, respectively, with and without fibers, compared to PC-20. The diphasic and triphasic conductive material with the smaller size of aggregates (5–10 mm) increased the FCR values up to 38.95% and 42.21%, respectively, as compared to those of greater size coarse aggregates (15–20 mm). The hybrid uses of fibrous and filler materials improved post-cracking behavior as well as the self-sensing ability of reinforced concrete.


2021 ◽  
pp. 073168442110517
Author(s):  
Hong-Joon Choi ◽  
Min-Jae Kim ◽  
Doo-Yeol Yoo

This study was conducted to evaluate the curing temperature effect on the mechanical properties of high-strength strain-hardening cementitious composite (SHCC) containing waste supplementary cementitious materials (SCMs) and polyethylene (PE) fibers. High-strength SHCC is developed to extend the strain-hardening interval by simultaneously inducing multiple cracks and ensuring the durability and strength of high-strength concrete. The starting point of this study was to enhance the tensile performance and durability of high-strength SHCC by utilizing various SCMs. In addition, the optimal curing conditions were investigated to derive the maximum material potential of each SCM, which aims to advance the performance of high-strength SHCC. The temperatures employed for the curing process were 20, 40, and 90°C. Moreover, ground granulated blast-furnace slag (GGBS), silica fume (SF), and cement kiln dust (CKD), were used as a partial replacement for cement to determine the best mix for achieving optimal tensile performance. Four mix designs were prepared, including a plain test specimen composed entirely of cement as binder; therefore, a total of 12 types of specimens were set considering the three curing temperatures. A compressive strength test was conducted with cube specimens, and a direct tensile test was performed with dog-bone-shaped specimens. Derivative thermogravimetry (DTG) and energy dispersive X-ray spectroscopy (EDS) mapping were conducted to identify the microstructures. The SF-containing SHCC cured at 90°C exhibited the best tensile performance in terms of deformability and energy absorption capacity by achieving the highest strain capacity of 4.37% and g-value of 294.5 kJ/m3. In addition, the performance of each specimen was reconfirmed based on the DTG, EDS mapping, and crack pattern results. Through these results, the optimal SCM mixing amount and curing conditions that led to noticeable performance improvement of high-strength SHCC were identified.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7071
Author(s):  
Khangamlung Kamei ◽  
Muhammad A. Khan

The robustness and stability of the system depend on structural integrity. This stability is, however, compromised by aging, wear and tear, overloads, and environmental factors. A study of vibration and fatigue cracking for structural health monitoring is one of the core research areas in recent times. In this paper, the structural dynamics and fatigue crack propagation behavior when subjected to thermal and mechanical loads were studied. It investigates the modal parameters of uncracked and various cracked specimens under uniform and non-uniform temperature conditions. The analytical model was validated by experimental and numerical approaches. The analysis was evaluated by considering different heating rates to attain the required temperatures. The heating rates were controlled by a proportional-integral-derivative (PID) temperature controller. It showed that a slow heating rate required an ample amount of time but more accurate results than quick heating. This suggested that the heating rate can cause variation in the structural response, especially at elevated temperatures. A small variation in modal parameters was also observed when the applied uniform temperatures were changed to non-uniform temperatures. This study substantiates the fatigue crack propagation behavior of pre-seeded cracks. The results show that propagated cracking depends on applied temperatures and associated mass. The appearance of double crack fronts and multiple cracks were observed. The appearance of multiple cracks seems to be due to the selection of the pre-seeded crack shape. Hence, the real cracks and pre-seeded cracks are distinct and need careful consideration in fatigue crack propagation analysis.


2021 ◽  
pp. 1-15
Author(s):  
S. Hasan ◽  
N. Akhtar ◽  
S. Shekhar

The paper presents a complicated case of coalescence of yield zones between two internal cracks out of four collinear straight cracks weakened an infinite isotropic plate. Two solutions are presented for the case of opening and closing of multiple cracks under general yielding conditions. Using these two solutions and the principle of superposition, we found the analytical expressions for load-bearing capacity of the plate using complex variable method. A numerical study has been carried out to investigate the behavior of yield zone length concerning remotely applied stresses at the boundary of the plate and the impact of two outer cracks on the propagation of inner cracks due to coalesced yield zones. Results obtained are reported graphically.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Marcel Xavier ◽  
Nicolas Van Goethem

PurposeIn the paper an approach for crack nucleation and propagation phenomena in brittle plate structures is presented.Design/methodology/approachThe Francfort–Marigo damage theory is adapted to the Kirchhoff and Reissner–Mindlin plate bending models. Then, the topological derivative method is used to minimize the associated Francfort–Marigo shape functional. In particular, the whole damaging process is governed by a threshold approach based on the topological derivative field, leading to a notable simple algorithm.FindingsNumerical simulations are driven in order to verify the applicability of the proposed method in the context of brittle fracture modeling on plates. The obtained results reveal the capability of the method to determine nucleation and propagation including bifurcation of multiple cracks with a minimal number of user-defined algorithmic parameters.Originality/valueThis is the first work concerning brittle fracture modeling of plate structures based on the topological derivative method.


2021 ◽  
Author(s):  
PAOLO CARRARO ◽  
SIMONETTO MIRKO ◽  
LUCIO MARAGONI ◽  
MARINO QUARESIMIN

Predicting the initiation and propagation of multiple off-axis cracks in multidirectional laminates under cyclic loadings is essential in a stiffness-driven design approach. Even under a constant amplitude cyclic load, the multiple crack initiation represents always an inherently variable amplitude (VA) problem. Indeed, the initiation of cracks causes a stress re-distribution so that each point in a laminate is subjected to a stress state that changes continuously during the fatigue life. At present, no models or experimental evidences on the crack initiation phenomenon under VA loadings are available in the literature. Crack density prediction models usually rely on a simple linear damage accumulation rule, even if its validity has not been proved yet. In this work, two types of fatigue tests were carried out on glass/epoxy cross-ply laminates under VA two-block loadings: 1) Initially, the number of cycles in the first block was chosen low enough to prevent the initiation of transverse cracks in the first block; then the load was changed and the crack initiation phenomenon was characterized in the second block. 2) Then, two block loadings were applied on other specimens, with a high enough number of cycles in the first block to promote the initiation of multiple cracks; the crack density evolution was thus characterized in both blocks. A model recently developed by the authors was applied to the experimental data, revealing the suitability of the linear damage accumulation rule under block loadings, at least from a phenomenological point of view.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6171
Author(s):  
Aimin Deng ◽  
Maosen Cao ◽  
Qitian Lu ◽  
Wei Xu

Identification of cracks in beam-type components is significant to ensure the safety of structures. Among the approaches relying on mode shapes, the concept of transverse pseudo-force (TPF) has been well proved for single and multiple crack identification in beams made of isotropic materials; however, there is a noticeable gap between the concept of TPF and its applications in composite laminated beams. To fill this gap, an enhanced TPF approach that relies on perturbation to dynamic equilibrium is proposed for the identification of multiple cracks in composite laminated beams. Starting from the transverse equation of motion, this study formulates the TPF in a composite laminated beam for the identification of multiple cracks. The capability of the approach is numerically verified using the FE method. The applicability of the approach is experimentally validated on a carbon fiber-reinforced polymer laminated beam with three cracks, the mode shapes of which are acquired through non-contact vibration measurement using a scanning laser vibrometer. In particular, a statistic manner is utilized to enable the approach to be feasible to real scenarios in the absence of material and structural information; besides, an integrating scheme is utilized to enable the approach to be capable of identifying cracks even in the vicinity of nodes of mode shapes.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5013
Author(s):  
Stefan Grabke ◽  
Felix Clauß ◽  
Kai-Uwe Bletzinger ◽  
Mark Alexander Ahrens ◽  
Peter Mark ◽  
...  

Reinforced concrete is a widely used construction material in the building industry. With the increasing age of structures and higher loads there is an immense demand for structural health monitoring of built infrastructure. Coda wave interferometry is a possible candidate for damage detection in concrete whose applicability is demonstrated in this study. The technology is based on a correlation evaluation of two ultrasonic signals. In this study, two ways of processing the correlation data for damage detection are compared. The coda wave measurement data are obtained from a four-point bending test at a reinforced concrete specimen that is also instrumented with fibre optic strain measurements. The used ultrasonic signals have a central frequency of 60 kHz which is a significant difference to previous studies. The experiment shows that the coda wave interferometry has a high sensitivity for developing cracks and by solving an inverse problem even multiple cracks can be distinguished. A further specialty of this study is the use of finite elements for solving a diffusion problem which is needed to state the previously mentioned inverse problem for damage localization.


Author(s):  
Сергей Ромуальдович Игнатович ◽  
Александр Сергеевич Якушенко ◽  
Владимир Сергеевич Краснопольский ◽  
Евгений Игоревич Годына

Multiple Site Damage (MSD) is one of the significant damaging factors that limit the airworthiness of aging fleet aircrafts. In case of MSD multiple fatigue cracks initiates and propagates at the rivet holes. Those cracks are relatively short in length, but with a sufficiently large number of them and an unfavorable arrangement along the rivet joint, they can join together and form a crack of a dangerous length. To prevent this type of damage it is necessary to have adequate methods for predicting the boundary state of riveted joints during MSD. A useful approach is a numerical experiment based on Monte-Carlo simulation of the MSD main random factors – the formation of initial cracks and their growth. This paper presents a probabilistic model for predicting the initial stage of MSD – destruction of at least one bridge between the adjacent holes. A level I model is considered, which describes the process of fatigue failure of specimens without rivets but with multiple holes, which are typical for riveted joints. The initiation of fatigue cracks and their growth are modeled taking into account the laws of damage development obtained experimentally on specimens with multiple cracks. So, to simulate the random initiation of cracks in time the Weibull distribution is used. The parameters of this distribution depend on the applied stress. The growth of cracks is described by the Paris' equation, taking into account the experimentally confirmed correlation between the coefficients of this equation. The model assumes that each initiated crack propagates according to a random value of the Paris' equation exponent. The distribution of such a random value corresponds to a logarithmically normal law with experimentally obtained parameters. The criterion for the possible join of opposite cracks growing from adjacent holes is the uniting of plastic deformation zones at the tips of such cracks. The results of modeling are presented in the form of multiple site damage realization field of points in the coordinates of the number of cycles before the initiation of cracks vs. the number of cycles before the destruction of the bridge between holes.


Sign in / Sign up

Export Citation Format

Share Document