scholarly journals Agricultural residues bioenergy potential that sustain soil carbon depends on energy conversion pathways

GCB Bioenergy ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1002-1013
Author(s):  
Julie H. Hansen ◽  
Lorie Hamelin ◽  
Arezoo Taghizadeh‐Toosi ◽  
Jørgen E. Olesen ◽  
Henrik Wenzel
2019 ◽  
Vol 3 (5) ◽  
pp. 573-578 ◽  
Author(s):  
Kwanwoo Shin

Living cells naturally maintain a variety of metabolic reactions via energy conversion mechanisms that are coupled to proton transfer across cell membranes, thereby producing energy-rich compounds. Until now, researchers have been unable to maintain continuous biochemical reactions in artificially engineered cells, mainly due to the lack of mechanisms that generate energy-rich resources, such as adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). If these metabolic activities in artificial cells are to be sustained, reliable energy transduction strategies must be realized. In this perspective, this article discusses the development of an artificially engineered cell containing a sustainable energy conversion process.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (6) ◽  
pp. 19-24
Author(s):  
TROY RUNGE ◽  
CHUNHUI ZHANG

Agricultural residues and energy crops are promising resources that can be utilized in the pulp and paper industry. This study examines the potential of co-cooking nonwood materials with hardwoods as means to incorporate nonwood material into a paper furnish. Specifically, miscanthus, switchgrass, and corn stover were substituted for poplar hardwood chips in the amounts of 10 wt %, 20 wt %, and 30 wt %, and the blends were subjected to kraft pulping experiments. The pulps were then bleached with an OD(EP)D sequence and then refined and formed into handsheets to characterize their physical properties. Surprisingly, all three co-cooked pulps showed improved strength properties (up to 35%). Sugar measurement of the pulps by high-performance liquid chromatography suggested that the strength increase correlated with enriched xylan content.


Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Author(s):  
W. R. EMANUEL ◽  
J. S. OLSON ◽  
W. M. POST ◽  
A. G. STANGENBERGER ◽  
P. J. ZINKE

Author(s):  
J. A. NEWCOMER ◽  
G. RAPALEE ◽  
S. E. TRUMBORE
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document