scholarly journals Effect of corneal thickness on intraocular pressure measurements with the Pascal dynamic contour, Canon TX-10 non-contact and Goldmann applanation tonometers in healthy subjects

2009 ◽  
Vol 92 (1) ◽  
pp. 14-18 ◽  
Author(s):  
Aysel Pelit ◽  
Rana Altan-Yaycioglu ◽  
Aykut Pelit ◽  
Yonca A Akova
2019 ◽  
Vol 30 (6) ◽  
pp. 1432-1439 ◽  
Author(s):  
Lisa Ramm ◽  
Robert Herber ◽  
Eberhard Spoerl ◽  
Lutz E Pillunat ◽  
Naim Terai

Purpose: To investigate the impact of diabetes mellitus–induced changes on intraocular pressure measurements using Goldmann applanation tonometry, Ocular Response Analyzer, and Corvis ST. Methods: Measurements were done using Goldmann applanation tonometry, Ocular Response Analyzer, and Corvis ST in 69 diabetic patients. Biomechanical-corrected intraocular pressure values by Ocular Response Analyzer (IOPcc) and Corvis ST (bIOP) were used. In addition, biometry and tomography were performed and information on diabetes mellitus specific factors was collected. Results were compared to an age-matched group of 68 healthy subjects. Results: In diabetes mellitus, Goldmann applanation tonometry intraocular pressure (P = 0.193) and central corneal thickness (P = 0.184) were slightly increased. Also, IOPcc (P = 0.075) and bIOP (P = 0.542) showed no significant group difference. In both groups, IOPcc was higher than Goldmann applanation tonometry intraocular pressure (P = 0.002, P < 0.001), while bIOP was nearly equal to Goldmann applanation tonometry intraocular pressure (P = 0.795, P = 0.323). Central corneal thickness showed a tendency to higher values in poorly controlled than in controlled diabetes mellitus (P = 0.059). Goldmann applanation tonometry intraocular pressure correlated to central corneal thickness, while IOPcc and bIOP were independent from central corneal thickness in both groups. All intraocular pressure values showed significant associations to corneal biomechanical parameters. Only in diabetes mellitus, bIOP was correlated to Pachy slope (P = 0.023). Conclusion: In diabetes mellitus, Goldmann applanation tonometry intraocular pressure was slightly, but not significantly, increased, which might be caused by a higher central corneal thickness and changes in corneal biomechanical properties. However, intraocular pressure values measured by Ocular Response Analyzer and Corvis ST were not significantly different between diabetes mellitus patients and healthy subjects. The bIOP showed a higher agreement with Goldmann applanation tonometry than IOPcc and was independent from central corneal thickness.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Lisa Ramm ◽  
Robert Herber ◽  
Eberhard Spoerl ◽  
Frederik Raiskup ◽  
Lutz E. Pillunat ◽  
...  

Purpose. To compare intraocular pressure (IOP) measurements with Goldmann applanation tonometry (GAT), ocular response analyzer (ORA), dynamic contour tonometer (DCT), and Corvis ST (CST) in healthy subjects. Methods. In a prospective, observational study, IOP measurements with GAT (GAT-IOPc), ORA (IOPcc), DCT (DCT-IOP), and CST (bIOP) were performed and analyzed in 94 healthy subjects. Results. Mean age of the participants was 45.6 ± 17.2 years (range 18 to 81 years). Mean GAT-IOPc was 12.9 ± 2.4 mmHg, mean DCT-IOP was 16.1 ± 2.6 mmHg, and mean IOPcc was 15.6 ± 3.3 mmHg. DCT-IOP and IOPcc were significantly higher than GAT-IOPc (P<0.001). Mean bIOP was 13.5 ± 2.4 mmHg that was slightly higher but not significantly different from GAT-IOPc (P=0.146). Correlation analysis of IOP values and central corneal thickness (CCT) revealed a negative correlation between GAT-IOPc and CCT (r = −0.347; P=0.001). However, IOPcc, DCT-IOP, and bIOP showed no significant correlation to CCT. Only bIOP revealed a weak but significant age dependency (r = 0.321, P=0.002). Conclusion. All tonometry devices showed a good agreement of biomechanical corrected IOP values with GAT-IOPc. As no influence of CCT on IOPcc, DCT-IOP, and bIOP was detectable, the used correction algorithms appear to be appropriate in these tonometers in the clinical setting. The highest agreement was found between GAT-IOPc and bIOP. However, bIOP weakly correlated with participants’ age. Further studies are needed to elucidate the role of bIOP for IOP measurement.


Vision ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 45
Author(s):  
Marco Antonio de Castro Olyntho Junior ◽  
Lucas Bertazzi Augusto ◽  
Carolina P. B. Gracitelli ◽  
Andrew J. Tatham

Evaluate the effect of corneal thickness, densitometry and curvature on intraocular pressure (IOP) measurements obtained by Goldmann applanation tonometry (GAT), non-contact tonometry (NCT), rebound tonometry (RT), and dynamic contour tonometry (DCT). A cross-sectional prospective study involving 40 participants was performed. Corneal measurements were obtained using Pentacam (Oculus GMbH, Wetzlar, Germany), densitometry was measured at annuli of 0–2, 2–6, 6–10 and 10–12 mm. The relationship between corneal thickness (central, 4 and 6 mm), corneal astigmatism and corneal densitometry and IOP was examined. There was a significant relationship between corneal thickness (central, 4 and 6 mm) and GAT180, GAT90, RT, and NCT (P < 0.001 for all comparisons) but not for DCT. Higher corneal densitometry (6–10 mm and 10–12 mm zones) was associated with higher IOP from GAT180 and GAT90, and higher densitometry in the 6–10 mm zone correlated with higher IOP from NCT, however corneal densitometry increased with age. Accounting for age, the relationship between corneal densitometry and IOP measurements was not significant. In eyes with greater corneal astigmatism there was a greater difference between GAT90 and GAT180 measurements. IOP measurements may be affected by corneal thickness, densitometry and curvature. DCT was less affected by properties of the cornea compared to other devices.


Sign in / Sign up

Export Citation Format

Share Document