Leptomeningeal Collateral Volume Flow Assessed by Quantitative Magnetic Resonance Angiography in Large-Vessel Cerebrovascular Disease

2009 ◽  
Vol 19 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Sean Ruland ◽  
Aiesha Ahmed ◽  
Kurian Thomas ◽  
Meide Zhao ◽  
Sepideh Amin-Hanjani ◽  
...  
2017 ◽  
Vol 10 (2) ◽  
pp. 156-161 ◽  
Author(s):  
Sophia F Shakur ◽  
Denise Brunozzi ◽  
Ahmed E Hussein ◽  
Andreas Linninger ◽  
Chih-Yang Hsu ◽  
...  

BackgroundThe hemodynamic evaluation of cerebral arteriovenous malformations (AVMs) using DSA has not been validated against true flow measurements.ObjectiveTo validate AVM hemodynamics assessed by DSA using quantitative magnetic resonance angiography (QMRA).Materials and methodsPatients seen at our institution between 2007 and 2016 with a supratentorial AVM and DSA and QMRA obtained before any treatment were retrospectively reviewed. DSA assessment of AVM flow comprised AVM arterial-to-venous time (A-Vt) and iFlow transit time. A-Vt was defined as the difference between peak contrast intensity in the cavernous internal carotid artery and peak contrast intensity in the draining vein. iFlow transit times were determined using syngo iFlow software. A-Vt and iFlow transit times were correlated with total AVM flow measured using QMRA and AVM angioarchitectural and clinical features.Results33 patients (mean age 33 years) were included. Nine patients presented with hemorrhage. Mean AVM volume was 9.8 mL (range 0.3–57.7 mL). Both A-Vt (r=−0.47, p=0.01) and iFlow (r=−0.44, p=0.01) correlated significantly with total AVM flow. iFlow transit time was significantly shorter in patients who presented with seizure but A-Vt and iFlow did not vary with other AVM angioarchitectural features such as venous stenosis or hemorrhagic presentation.ConclusionsA-Vt and iFlow transit times on DSA correlate with cerebral AVM flow measured using QMRA. Thus, these parameters may be used to indirectly estimate AVM flow before and after embolization during angiography in real time.


2015 ◽  
Vol 84 (12) ◽  
pp. 2613-2617 ◽  
Author(s):  
Vince I. Madai ◽  
Federico C. von Samson-Himmelstjerna ◽  
Nora Sandow ◽  
Florian Weiler ◽  
Miriam Bauer ◽  
...  

Neurosurgery ◽  
2013 ◽  
Vol 73 (6) ◽  
pp. 962-968 ◽  
Author(s):  
Sepideh Amin-Hanjani ◽  
Amritha Singh ◽  
Hashem Rifai ◽  
Keith R. Thulborn ◽  
Ali Alaraj ◽  
...  

Abstract BACKGROUND: The optimal revascularization strategy for symptomatic adult moyamoya remains controversial. Whereas direct bypass offers immediate revascularization, indirect bypass can effectively induce collaterals over time. OBJECTIVE: Using angiography and quantitative magnetic resonance angiography, we examined the relative contributions of direct and indirect bypass in moyamoya patients after combined direct superficial temporal artery-to-middle cerebral artery (STA-MCA) bypass and indirect encephaloduroarteriosynangiosis (EDAS). METHODS: A retrospective review of moyamoya patients undergoing combined STA-MCA bypass and EDAS was conducted, excluding pediatric patients and hemorrhagic presentation. Patients with quantitative magnetic resonance angiography measurements of the direct bypass immediately and > 6 months postoperatively were included. Angiographic follow-up, when available, was used to assess EDAS collaterals at similar time intervals. RESULTS: Of 16 hemispheres in 13 patients, 11 (69%) demonstrated a significant (> 50%) decline in direct bypass flow at > 6 months compared with baseline, averaging a drop from 99 ± 35 to12 ± 7 mL/min. Conversely, angiography in these hemispheres demonstrated prominent indirect collaterals, in concert with shrinkage of the STA graft. Decline in flow was apparent at a median of 9 months but was evident as early as 2 to 3 months. CONCLUSION: In this small cohort, a reciprocal relationship between direct STA bypass flow and indirect EDAS collaterals frequently occurred. This substantiates the notion that combined direct/indirect bypass can provide temporally complementary revascularization.


Stroke ◽  
2005 ◽  
Vol 36 (6) ◽  
pp. 1140-1145 ◽  
Author(s):  
Sepideh Amin-Hanjani ◽  
Xinjian Du ◽  
Meide Zhao ◽  
Katherine Walsh ◽  
Tim W. Malisch ◽  
...  

Neurosurgery ◽  
2017 ◽  
Vol 83 (2) ◽  
pp. 210-216 ◽  
Author(s):  
Denise Brunozzi ◽  
Ahmed E Hussein ◽  
Sophia F Shakur ◽  
Andreas Linninger ◽  
Chih-Yang Hsu ◽  
...  

Abstract BACKGROUND Digital subtraction angiography (DSA) currently provides angioarchitectural features of cerebral arteriovenous malformations (AVMs) but its role in the hemodynamic evaluation of AVMs is poorly understood. OBJECTIVE To assess contrast time-density time (TT) on DSA relative to AVM flow measured using quantitative magnetic resonance angiography (QMRA). METHODS Patients seen at our institution between 2007 and 2014 with a supratentorial AVM and DSA and QMRA obtained prior to any treatment were retrospectively reviewed. Regions of interest were selected on the draining veins at the point closest to the nidus. TT on DSA was defined as time needed for contrast to change image intensity from 10% to 100%, 100% to 10%, and 25% to 25%. TT was correlated to AVM total flow, angioarchitectural features, and hemorrhage. RESULTS Twenty-eight patients (mean age 35.6 yr) were included. Six patients presented with hemorrhage. Mean AVM volume was 11.42 mL (range 0.3-57.7 mL). Higher total AVM flow significantly correlated with shorter TT100%-10% and TT25%-25% (P = .02, .02, respectively). Presence of venous stenosis correlated significantly with shorter TT100%-10% (P = .04) and TT25%-25% (P = .04). AVMs with a single draining vein exhibited longer TT25%-25% compared to those with multiple draining veins (P = .04). Ruptured AVMs had significantly shorter TT10%-100% compared to unruptured AVMs (P = .05). CONCLUSION TT on DSA correlates with cerebral AVM flow measured using QMRA and with AVM angioarchitecture and hemorrhagic presentation. Thus, TT may be used to indirectly estimate AVM flow during angiography in real-time and may also be an indicator of important AVM characteristics associated with outflow resistance and increased rupture risk, such as venous stenosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhen-An Hwang ◽  
Chia-Wei Li ◽  
Chien-Yuan Eddy Lin ◽  
Jyh-Horng Chen ◽  
Chia-Yuen Chen ◽  
...  

Abstract Background Cerebral blood flow (CBF) and the morphology of the cerebral arteries are important for characterizing cerebrovascular disease. Silent magnetic resonance angiography (Silent MRA) is a MRA technique focusing on arterial structural delineation. This study was conducted to investigate the correlation between Silent MRA and CBF quantification, which has not yet been reported. Methods Both the Silent MRA and time-of-flight magnetic resonance angiography scans were applied in seventeen healthy participants to acquire the arterial structure and to find arterial intensities. Phase-contrast MRA (PC-MRA) was then used to perform the quantitative CBF measurement of 13 cerebral arteries. Due to different dataset baseline signal level of Silent MRA, the signal intensities of the selected 13 cerebral arteries were normalized to the selected ROIs of bilateral internal carotid arteries. The normalized signal intensities were used to determine the relationship between Silent MRA and CBF. Results The image intensity distribution of arterial regions generated by Silent MRA showed similar laminar shape as the phase distribution by PC-MRA (correlation coefficient > 0.62). Moreover, in both the results of individual and group-leveled analysis, the intensity value of arterial regions by Silent MRA showed positively correlation with the CBF by PC-MRA. The coefficient of determination (R2) of individual trends ranged from 0.242 to 0.956, and the R2 of group-leveled result was 0.550. Conclusions This study demonstrates that Silent MRA provides valuable CBF information despite arterial structure, rendering it a potential tool for screening for cerebrovascular disease.


Sign in / Sign up

Export Citation Format

Share Document