phase contrast
Recently Published Documents


TOTAL DOCUMENTS

6694
(FIVE YEARS 1028)

H-INDEX

111
(FIVE YEARS 11)

2022 ◽  
Vol 147 ◽  
pp. 107631
Author(s):  
Charlotte Kyeremah ◽  
Jeffrey La ◽  
Mohamed Amine Gharbi ◽  
Chandra S. Yelleswarapu

2022 ◽  
Vol 94 ◽  
pp. 43-52
Author(s):  
Katrine Paiva ◽  
Anderson Alvarenga de Moura Meneses ◽  
Renan Barcellos ◽  
Mauro Sérgio dos Santos Moura ◽  
Gabriela Mendes ◽  
...  

2022 ◽  
Author(s):  
Zheng Wei ◽  
Anjie Peng ◽  
Fengjiao Bin ◽  
Yaxin Chen ◽  
Rui Guan

Abstract Phase image in tapping mode atomic force microscope (TM-AFM) results from various dissipation in microcantilever system. The phases mainly reflected the tip-sample contact dissipations which allowed the nanoscale characteristics to be distinguished. In this research investigation, two factors affecting the phase and phase contrast were analyzed. It was concluded from the theoretical and experimental results that the phases and phase contrasts in the TM-AFM were related to the excitation frequencies and energy dissipation of the system. For a two-component blend, it was theoretically and experimentally proven that there was an optimal excitation frequency for maximizing the phase contrast. Therefore, selecting the optimal excitation frequency could potentially improve the phase contrast results. In addition, only the key dissipation between the tip and sample was found to accurately reflect the sample properties. Meanwhile, the background dissipation could potentially reduce the contrasts of the phase images and even mask or distort the effective information in the phase images. In order to address the aforementioned issues, a self-excited method was adopted in this study in order to eliminate the influencing effects of the background dissipation on the phases. Subsequently, the real phase information of the samples was successfully obtained. It was considered in this study that eliminating the background dissipation had effectively improved the phase contrast results and the real phase information of the samples was accurately reflected. These results are of great significance to optimize the phase of two-component samples and multi-component samples in atomic force microscope.


Author(s):  
Wen Jie Wu ◽  
Jinhui Chang

AbstractThe effect of oxygen on the germination and culturability of aerobic Bacillus atrophaeus spores was investigated in this study. Under oxic or anoxic conditions, various nutritional and non-nutritional germinants were utilized to induce germination. Tb3+-dipicolinic acid fluorescence assay and phase-contrast microscopy were used to track the germination process. The final germination level, germination half time, and germination speed were used to define germination kinetics. Colony-forming unit enumeration was used to assess the culturability of germinated spores germinated with or without oxygen. The results show that in the absence of oxygen, the final germination level was unaffected, germination half time decreased by up to 35.0%, germination speed increased by up to 27.4%, and culturability decreased by up to 95.1%. It is suggested that oxygen affects some germinant receptor-dependent germination pathways, implying that biomolecules engaged in these pathways may be oxygen-sensitive. Furthermore, spores that have completed the germination process in either anoxic or oxic conditions may have different culturability. This research contributed to a better understanding of the fundamental mechanism of germination.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Felix Troger ◽  
Ivan Lechner ◽  
Martin Reindl ◽  
Christina Tiller ◽  
Magdalena Holzknecht ◽  
...  

Abstract Background Transthoracic echocardiography (TTE) is the diagnostic routine standard for assessing aortic stenosis (AS). However, its inaccuracies in determining stroke volume (SV) and aortic valve area (AVA) call for a more precise and dependable method. Phase-contrast cardiovascular magnetic resonance imaging (PC-CMR) is a promising tool to push these boundaries. Thus, the aim of this study was to validate a novel approach based on PC-CMR against the gold-standard of invasive determination of AVA in AS compared to TTE. Methods A total of 50 patients with moderate or severe AS underwent TTE, cardiac catheterization and CMR. AVA via PC-CMR was determined by plotting momentary flow across the valve against flow-velocity. SV by CMR was measured directly via PC-CMR and volumetrically using cine-images. Invasive SV and AVA were determined via Fick-principle and Gorlin-formula, respectively. TTE yielded SV and AVA using continuity equation. Gradients were calculated via the modified Bernoulli-equation. Results SV by PC-CMR (85 ± 31 ml) correlated strongly (r: 0.73, p < 0.001) with cine-CMR (85 ± 19 ml) without significant bias (lower and upper limits of agreement (LLoA and ULoA): − 41 ml and 44 ml, p = 0.83). In PC-CMR, mean pressure gradient correlated significantly with invasive determination (r: 0.36, p = 0.011). Mean AVA, as determined by PC-CMR during systole (0.78 ± 0.25 cm2), correlated moderately (r: 0.54, p < 0.001) with invasive AVA (0.70 ± 0.23 cm2), resulting in a small bias of 0.08 cm2 (LLoA and ULoA: − 0.36 cm2 and 0.55 cm2, p = 0.017). Inter-methodically, AVA by TTE (0.81 ± 0.23 cm2) compared to invasive determination showed similar correlations (r: 0.58, p < 0.001 with a bias of 0.11 cm2, LLoA and ULoA: − 0.30 and 0.52, p < 0.001) to PC-CMR. Intra- and interobserver reproducibility were excellent for AVA (intraclass-correlation-coefficients of 0.939 and 0.827, respectively). Conclusions Our novel approach using continuous determination of flow-volumes and velocities with PC-CMR enables simple AVA measurement with no bias to invasive assessment. This approach highlights non-invasive AS grading through CMR, especially when TTE findings are inconclusive.


Diagnostics ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 118
Author(s):  
Yuan-Hsi Tseng ◽  
Chien-Wei Chen ◽  
Min-Yi Wong ◽  
Teng-Yao Yang ◽  
Yu-Hui Lin ◽  
...  

The progression of clinical manifestations of lower-limb varicose veins remains unclear. This study investigated changes in lower-limb venous blood flow using phase-contrast magnetic resonance angiography. Data were collected on veins from 141 legs. We compared legs with and without varicose veins and related symptoms and examined varying levels of varicose vein symptom severity. Legs without varicose veins exhibited a lower absolute stroke volume (ASV, p < 0.01) and mean flux (MF, p = 0.03) for the great saphenous vein (GSV) compared with legs with symptomatic varicose veins. Legs with asymptomatic varicose veins exhibited lower MF for the GSV (p = 0.02) compared with legs with symptomatic varicose veins. Among legs with varicose veins, asymptomatic legs exhibited lower ASV (p = 0.03) and MF (p = 0.046) for the GSV compared with legs that exhibited skin changes or ulcers; however, no significant differences were observed between legs presenting with discomfort or edema and legs with skin changes or ulcers, and between legs presenting with discomfort or edema and asymptomatic legs. In conclusion, in the supine position, increased blood flow rate and blood flow volume in the GSV were associated with symptomatic varicose veins and increased symptom severity.


2022 ◽  
Author(s):  
Samantha Alloo ◽  
David Paganin ◽  
Kaye Morgan ◽  
Timur Gureyev ◽  
Sheridan Mayo ◽  
...  

2022 ◽  
Vol 17 (01) ◽  
pp. C01043
Author(s):  
L. Brombal ◽  
L. Rigon ◽  
F. Arfelli ◽  
R.H. Menk ◽  
F. Brun

Abstract The PEPI project is developing a new experimental facility integrating a chromatic photon-counting detector within an edge-illumination (EI) phase-contrast setup. In this context, a novel Geant4-based simulation tool has been introduced with the aim of defining the optimal design of the experimental setup. The code includes a custom X-ray refraction process and allows simulating the whole EI system, comprising a polychromatic and extended source, absorbing masks, substrates, their movement during acquisition, and X-ray detection. In this paper, a realistic spectral detector model is introduced and its energy response validated against experimental data acquired with synchrotron radiation at energies between 26 and 50 keV. Moreover, refraction and transmission images of a plastic phantom are reconstructed from simulation data and successfully compared with theoretical predictions. Finally, an optimization study aiming at finding the effect of the X-ray focal spot size (i.e. spatial coherence) on image quality is presented; the results suggest that, in the considered configuration, the system can tolerate source sizes up to 30 μm, while, for a fixed exposure time, the best signal-to-noise ratio in refraction images is found for source sizes in the order of 10 to 15 μm.


Sign in / Sign up

Export Citation Format

Share Document