Coupling biorelevant dissolution methods with physiologically based pharmacokinetic modelling to forecast in-vivo performance of solid oral dosage forms

2013 ◽  
Vol 65 (7) ◽  
pp. 937-952 ◽  
Author(s):  
Keiichi Otsuka ◽  
Yasushi Shono ◽  
Jennifer Dressman
1997 ◽  
Vol 4 (4) ◽  
pp. 23-32 ◽  
Author(s):  
Henry Malinowski ◽  
Patrick Marroum ◽  
Venkata Ramana Uppoor ◽  
William Gillespie ◽  
Hae-Young Ahn ◽  
...  

2021 ◽  
Vol 24 ◽  
pp. 548-562
Author(s):  
Matthias Shona Roost ◽  
Henrike Potthast ◽  
Chantal Walther ◽  
Alfredo García-Arieta ◽  
Ivana Abalos ◽  
...  

This article describes an overview of waivers of in vivo bioequivalence studies for additional strengths in the context of the registration of modified release generic products and is a follow-up to the recent publication for the immediate release solid oral dosage forms. The current paper is based on a survey among the participating members of the Bioequivalence Working Group for Generics (BEWGG) of the International Pharmaceutical Regulators Program (IPRP) regarding this topic. Most jurisdictions consider the extrapolation of bioequivalence results obtained with one (most sensitive) strength of a product series as less straightforward for modified release products than for immediate release products. There is consensus that modified release products should demonstrate bioequivalence not only in the fasted state but also in the fed state, but differences exist regarding the necessity of additional multiple dose studies. Fundamental differences between jurisdictions are revealed regarding requirements on the quantitative composition of different strengths and the differentiation of single and multiple unit dosage forms. Differences in terms of in vitro dissolution requirements are obvious, though these are mostly related to possible additional comparative investigations rather than regarding the need for product-specific methods. As with the requirements for immediate release products, harmonization of the various regulations for modified release products is highly desirable to conduct the appropriate studies from a scientific point of view, thus ensuring therapeutic equivalence.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Marco F. Taddio ◽  
Linjing Mu ◽  
Claudia Keller ◽  
Roger Schibli ◽  
Stefanie D. Krämer

Physiologically based pharmacokinetic modelling (PBPK) is a powerful tool to predict in vivo pharmacokinetics based on physiological parameters and data from in vivo studies and in vitro assays. In vivo PBPK modelling in laboratory animals by noninvasive imaging could help to improve the in vivo-in vivo translation towards human pharmacokinetics modelling. We evaluated the feasibility of PBPK modelling with PET data from mice. We used data from two of our PET tracers under development, [11C]AM7 and [11C]MT107. PET images suggested hepatobiliary excretion which was reduced after cyclosporine administration. We fitted the time-activity curves of blood, liver, gallbladder/intestine, kidney, and peripheral tissue to a compartment model and compared the resulting pharmacokinetic parameters under control conditions ([11C]AM7 n=2; [11C]MT107, n=4) and after administration of cyclosporine ([11C]MT107, n=4). The modelling revealed a significant reduction in [11C]MT107 hepatobiliary clearance from 35.2±10.9 to 17.1±5.6 μl/min after cyclosporine administration. The excretion profile of [11C]MT107 was shifted from predominantly hepatobiliary (CLH/CLR = 3.8±3.0) to equal hepatobiliary and renal clearance (CLH/CLR = 0.9±0.2). Our results show the potential of PBPK modelling for characterizing the in vivo effects of transporter inhibition on whole-body and organ-specific pharmacokinetics.


2021 ◽  
Vol 24 ◽  
pp. 113-126
Author(s):  
Alfredo Garcia Arieta ◽  
Craig Simon ◽  
Andrew Tam ◽  
Gustavo Mendes Lima Santos ◽  
Eduardo Agostinho Freitas Fernandes ◽  
...  

The requirements to waive in vivo bioequivalence studies for immediate release solid oral dosage forms based on the Biopharmaceutics Classifications System (BCS) are well known, and biowaivers[1] for other types of oral dosage forms based on pre-defined criteria may also be acceptable. Similarly, biowaivers for dosage forms such as injectable products may also be allowed if certain criteria are met. The current paper summarises the biowaiver requirements for oral solutions and suspensions, soft gelatin capsules and injectable products (intravenous injections, subcutaneous and intramuscular injections, emulsions for injection and micellar solutions for injection) among the participants of the Bioequivalence Working Group for Generics (BEWGG) of the International Pharmaceutical Regulators Programme (IPRP). A review of the requirements indicated that there was a trend towards convergence when the dosage form became less complex; however, the most common approach used by each of the jurisdictions was a case-by-case approach given that most jurisdictions do not have well defined guidelines to support all possible scenarios. Even in the simplest case of intravenous solutions, the acceptability of qualitative changes in excipients differ between the IPRP members.  Notwithstanding the differences, the dissemination of the information is a first step towards regulatory convergence regarding biowaivers for certain dosage forms and should be useful for pharmaceutical companies currently developing generic medicinal products for IPRP jurisdictions.  


2008 ◽  
Vol 25 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Yasvanth Ashokraj ◽  
Kanwal Jit Kaur ◽  
Inderjit Singh ◽  
Gunjan Kohli ◽  
Shantaram Ramdoss Bhade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document