Journal of Pharmacokinetics and Pharmacodynamics
Latest Publications


TOTAL DOCUMENTS

877
(FIVE YEARS 177)

H-INDEX

49
(FIVE YEARS 5)

Published By Springer-Verlag

1573-8744, 1567-567x

Author(s):  
Tongli Zhang ◽  
John J. Tyson

AbstractIndividual biological organisms are characterized by daunting heterogeneity, which precludes describing or understanding populations of ‘patients’ with a single mathematical model. Recently, the field of quantitative systems pharmacology (QSP) has adopted the notion of virtual patients (VPs) to cope with this challenge. A typical population of VPs represents the behavior of a heterogeneous patient population with a distribution of parameter values over a mathematical model of fixed structure. Though this notion of VPs is a powerful tool to describe patients’ heterogeneity, the analysis and understanding of these VPs present new challenges to systems pharmacologists. Here, using a model of the hypothalamic–pituitary–adrenal axis, we show that an integrated pipeline that combines machine learning (ML) and bifurcation analysis can be used to effectively and efficiently analyse the behaviors observed in populations of VPs. Compared with local sensitivity analyses, ML allows us to capture and analyse the contributions of simultaneous changes of multiple model parameters. Following up with bifurcation analysis, we are able to provide rigorous mechanistic insight regarding the influences of ML-identified parameters on the dynamical system’s behaviors. In this work, we illustrate the utility of this pipeline and suggest that its wider adoption will facilitate the use of VPs in the practice of systems pharmacology.


Author(s):  
Sean M. S. Hayes ◽  
Jeffrey R. Sachs ◽  
Carolyn R. Cho

AbstractNetwork inference is a valuable approach for gaining mechanistic insight from high-dimensional biological data. Existing methods for network inference focus on ranking all possible relations (edges) among all measured quantities such as genes, proteins, metabolites (features) observed, which yields a dense network that is challenging to interpret. Identifying a sparse, interpretable network using these methods thus requires an error-prone thresholding step which compromises their performance. In this article we propose a new method, DEKER-NET, that addresses this limitation by directly identifying a sparse, interpretable network without thresholding, improving real-world performance. DEKER-NET uses a novel machine learning method for feature selection in an iterative framework for network inference. DEKER-NET is extremely flexible, handling linear and nonlinear relations while making no assumptions about the underlying distribution of data, and is suitable for categorical or continuous variables. We test our method on the Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge data, demonstrating that it can directly identify sparse, interpretable networks without thresholding while maintaining performance comparable to the hypothetical best-case thresholded network of other methods.


Author(s):  
Jaimit Parikh ◽  
Timothy Rumbell ◽  
Xenia Butova ◽  
Tatiana Myachina ◽  
Jorge Corral Acero ◽  
...  

AbstractBiophysical models are increasingly used to gain mechanistic insights by fitting and reproducing experimental and clinical data. The inherent variability in the recorded datasets, however, presents a key challenge. In this study, we present a novel approach, which integrates mechanistic modeling and machine learning to analyze in vitro cardiac mechanics data and solve the inverse problem of model parameter inference. We designed a novel generative adversarial network (GAN) and employed it to construct virtual populations of cardiac ventricular myocyte models in order to study the action of Omecamtiv Mecarbil (OM), a positive cardiac inotrope. Populations of models were calibrated from mechanically unloaded myocyte shortening recordings obtained in experiments on rat myocytes in the presence and absence of OM. The GAN was able to infer model parameters while incorporating prior information about which model parameters OM targets. The generated populations of models reproduced variations in myocyte contraction recorded during in vitro experiments and provided improved understanding of OM’s mechanism of action. Inverse mapping of the experimental data using our approach suggests a novel action of OM, whereby it modifies interactions between myosin and tropomyosin proteins. To validate our approach, the inferred model parameters were used to replicate other in vitro experimental protocols, such as skinned preparations demonstrating an increase in calcium sensitivity and a decrease in the Hill coefficient of the force–calcium (F–Ca) curve under OM action. Our approach thereby facilitated the identification of the mechanistic underpinnings of experimental observations and the exploration of different hypotheses regarding variability in this complex biological system.


Author(s):  
Emeric Sibieude ◽  
Akash Khandelwal ◽  
Pascal Girard ◽  
Jan S. Hesthaven ◽  
Nadia Terranova

AbstractA fit-for-purpose structural and statistical model is the first major requirement in population pharmacometric model development. In this manuscript we discuss how this complex and computationally intensive task could benefit from supervised machine learning algorithms. We compared the classical pharmacometric approach with two machine learning methods, genetic algorithm and neural networks, in different scenarios based on simulated pharmacokinetic data. Genetic algorithm performance was assessed using a fitness function based on log-likelihood, whilst neural networks were trained using mean square error or binary cross-entropy loss. Machine learning provided a selection based only on statistical rules and achieved accurate selection. The minimization process of genetic algorithm was successful at allowing the algorithm to select plausible models. Neural network classification tasks achieved the most accurate results. Neural network regression tasks were less precise than neural network classification and genetic algorithm methods. The computational gain obtained by using machine learning was substantial, especially in the case of neural networks. We demonstrated that machine learning methods can greatly increase the efficiency of pharmacokinetic population model selection in case of large datasets or complex models requiring long run-times. Our results suggest that machine learning approaches can achieve a first fast selection of models which can be followed by more conventional pharmacometric approaches.


Author(s):  
Carl A. Wesolowski ◽  
Jane Alcorn ◽  
Geoffrey T. Tucker

Abstract The gamma-Pareto type I convolution (GPC type I) distribution, which has a power function tail, was recently shown to describe the disposition kinetics of metformin in dogs precisely and better than sums of exponentials. However, this had very long run times and lost precision for its functional values at long times following intravenous injection. An accelerated algorithm and its computer code is now presented comprising two separate routines for short and long times and which, when applied to the dog data, completes in approximately 3 min per case. The new algorithm is a more practical research tool. Potential pharmacokinetic applications are discussed. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document