dosage forms
Recently Published Documents





2022 ◽  
Vol 146 ◽  
pp. 112576
Jenny Johannesson ◽  
Paula Hansson ◽  
Christel A.S. Bergström ◽  
Mattias Paulsson

Noor Yousif Albassam ◽  
Amenah Mohammed ◽  
Suhair Murtada

Purpose:To evaluate knowledge, practice and attitude of community pharmacists in Basra regarding modified release dosage forms which are widely used for many therapeutic purposes in pharmacy practice. Methods:The current study was conducted among certified pharmacists in Basra governorate- south of Iraq. Data collection was carried out by a questionnaire. Results:A total number of 175 community pharmacists responded to the questionnaire. The majority worked in OTC based dispensing pharmacies located in the center of the city. Most respondents missed K1 and were unable to state the difference between different types of modified products. There was a major positive agreement towards medical representatives' rule in promoting the prescribing of modified release products by physicians. Avoiding crushing and breaking of solid oral modified release drugs were identified by the majority of participants. Correlation analysis showed a 22.8 correlation coefficient between knowledge and attitude which was statistically significant. Males showed statistically significant higher knowledge and practice scores than females. Conclusions:The conduction of a brief educational program would be very beneficial in bringing basic theoretical knowledge with practicing points of interest and promote a more positive attitude toward this unique class of novel drug delivery system.

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 159
Laura Andrade Junqueira ◽  
Atabak Ghanizadeh Tabriz ◽  
Francisco José Raposo ◽  
Luana Rocha Carobini ◽  
Urias Pardócimo Vaz ◽  

In the current study, we have coupled Fused Deposition Modelling (FDM) for the fabrication of plain polyvinyl alcohol (PVA) tablets followed by dispensing of minoxidil ethanolic solutions using inkjet printing. The use of a drop-on-solid printing approach facilitates an accurate and reproducible process while it controls the deposition of the drug amounts. For the purpose of the study, the effect of the solvent was investigated and minoxidil ink solutions of ethanol 70% v/v (P70) or absolute ethanol (P100) were applied on the plain PVA tablets. Physicochemical characterization showed that solvent miscibility with the polymer substrate plays a key role and can lead to the formation of drug crystals on the surface or drug absorption in the polymer matrix. The produced minoxidil tablets showed sustained release profiles or initial bursts strongly affected by the solvent grade used for dispensing the required dose on drug loaded 3D printed tablets. This paradigm demonstrates that the coupling of FDM and inkjet printing technologies could be used for rapid development of personalized dosage forms.


Objective: This study aims to build up the RP-HPLC process for Azilsartan and Cilnidipine and authenticate the RP-HPLC process according to ICH validation code Q2R1. Methods: System suitability testing was performed to discover the qualifying criterion of the method by injecting the identical standard solution of Azilsartan 40μg/ml and Cilnidipine 10μg/ml in mixture/combination in subsequent optimized chromatographic conditions and the chromatogram was recorded. Moreover, the planned method was validated as per ICH guideline Q2R1 for the following parameters: linearity and range, precision, accuracy, robustness, and determined % recovery. Results: The outcomes of %RSD for retention time and peak area were found to be 0.65 and 1.32 for Azilsartan and 0.85 and 1.90 for Cilnidipine. The correlation coefficient, y-intercept, slope of the regression line were 0.9996,-1127.1, 3313.9, and 0.9993, 1460.2, 2876.4 for Azilsartan and Cilnidipine, respectively. Moreover, the range of this method was observed to be 40-240μg/ml and 10-60 μg/ml for Azilsartan and Cilnidipine, standard concentrations respectively. The % RSD achieved for precision (repeatability) was observed in the range of 1.57 to 2.43 for Azilsartan and 0.70 to 1.88 for Cilnidipine. The % accuracy was found in the range of 96.96 to 101.92% w/w for Azilsartan and 99.19 to101.96%w/w for Cilnidipine. The percent recovery values achieved for Azilsartan were in the range of 99.87 to 106.39% w/w and for Cilnidipine in the range of 94.51 to 105.96% w/w. Conclusion: The author concludes that the simultaneous estimation of Azilsartan and Cilnidipine with predefined objectives was successfully achieved. Moreover, the method was found to be steadfast for the quantification of Azilsartan and Cilnidipine in marketed tablet dosage forms.


Lapatinib is a small molecule, a heterocyclic quinazoline derivative. The drug is used for targeted therapy of patients with breast cancer, in which there is overexpression of the human epidermal growth factor receptors (HER/ErbB). This review is devoted to studying modern instrumental methods of qualitative and quantitative analysis of lapatinib, which can be used both for quality control and standardization (of bulk pharmaceuticals and dosage forms) and pharmacokinetics studies of a drug. Reverse-phase high-performance liquid chromatography (RP-HPLC) is mainly used to identify lapatinib in tablets. Depending on the purpose of the study, various detectors are used (ultraviolet or diode-matrix detector), which makes it possible to determine not only the native compound but also the products of its degradation. Definition of lapatinib in the presence of degraded products is necessary for forced degradation studies to determine drug stability. When a drug is being developed, it is important to define and understand its pharmacokinetics. For such studies, high-performance liquid chromatography (HPLC) coupled with the mass selective detector is often used. It allows determining lapatinib in biological fluids. However, these methods are not applicable for identifying the drug directly in dosage forms and require further development and validation.

Sign in / Sign up

Export Citation Format

Share Document