Additional taxonomic coverage of the doubly uniparental inheritance in bivalves: Evidence of sex‐linked heteroplasmy in the razor clam Solen marginatus Pulteney, 1799, but not in the lagoon cockle Cerastoderma glaucum (Bruguière, 1789)

2020 ◽  
Vol 58 (2) ◽  
pp. 561-570 ◽  
Author(s):  
Livia Lucentini ◽  
Federico Plazzi ◽  
Andrea Augusto Sfriso ◽  
Claudia Pizzirani ◽  
Adriano Sfriso ◽  
...  
Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 883-894
Author(s):  
Liqin Cao ◽  
Ellen Kenchington ◽  
Eleftherios Zouros

Abstract In Mytilus, females carry predominantly maternal mitochondrial DNA (mtDNA) but males carry maternal mtDNA in their somatic tissues and paternal mtDNA in their gonads. This phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, presents a major departure from the uniparental transmission of organelle genomes. Eggs of Mytilus edulis from females that produce exclusively daughters and from females that produce mostly sons were fertilized with sperm stained with MitoTracker Green FM, allowing observation of sperm mitochondria in the embryo by epifluorescent and confocal microscopy. In embryos from females that produce only daughters, sperm mitochondria are randomly dispersed among blastomeres. In embryos from females that produce mostly sons, sperm mitochondria tend to aggregate and end up in one blastomere in the two- and four-cell stages. We postulate that the aggregate eventually ends up in the first germ cells, thus accounting for the presence of paternal mtDNA in the male gonad. This is the first evidence for different behaviors of sperm mitochondria in developing embryos that may explain the tight linkage between gender and inheritance of paternal mitochondrial DNA in species with DUI.


Author(s):  
Donald T. Stewart ◽  
Chloe M. Stephenson ◽  
Ljiljana M. Stanton ◽  
Emily E. Chase ◽  
Brent M. Robicheau ◽  
...  

Many freshwater mussels (Order Unionida) have an unusual system of doubly uniparental inheritance (DUI) of mitochondrial (mt) DNA. In species with DUI, males possess a female-transmitted (F-type) mt genome and a male-transmitted (M-type) mt genome. These genomes contain non-canonical open reading frame (orf) genes referred to as f-orf and m-orf, present in F and M mt genomes, respectively. These genes have been implicated in sexual development in Unionida. When gonochoric species become hermaphroditic, which has happened several times in Unionida, they lose their M-type mt genome, and f-orf genes evolve dramatically. Resulting F-ORF proteins are highly divergent in terms of primary nucleotide sequence, inferred amino acids, and hydrophobic properties; these genes (and proteins) are referred to as hermaphroditic orfs or h-orfs (and H-ORFs). We investigated patterns of hydrophobicity divergence for H-ORF proteins in hermaphrodites versus F-ORF proteins in closely related gonochoric species against cytochrome c oxidase subunit 1 (cox1) divergences. This approach was used to assess whether cryptic hermaphrodites can be detected. Although we did not detect evidence for the recent transition of any populations of Eastern Floaters, Pyganodon cataracta (Say, 1817) to hermaphroditism, our analyses demonstrate that molecular signatures in mtDNA can be used to detect hermaphroditism in freshwater mussels.


Genome ◽  
1998 ◽  
Vol 41 (6) ◽  
pp. 818-824 ◽  
Author(s):  
Manuel A Garrido-Ramos ◽  
Donald T Stewart ◽  
Brent W Sutherland ◽  
Eleftherios Zouros

We have examined the mitochondrial DNA (mtDNA) content of several somatic tissues from male and female individuals of the blue mussel, Mytilus edulis. As expected from the mode of doubly uniparental inheritance (DUI) of mtDNA that is characteristic of this genus, the dominant type of mtDNA in male gonads was the male-transmitted M type. In contrast, all male somatic tissues were dominated by the female-transmitted F type. The M type could occasionally be detected in one or another tissue of a few female individuals. The findings have several implications for the operation of doubly uniparental inheritance of mitochondrial DNA, among which the most important are (i) the M genome does not have an unconditional replicative advantage over the F genome, and (ii) in contrast to "masculinization" (the process by which an F molecule assumes the role of the M genome) "feminization" (the process by which an M molecule assumes the role of the F genome) might be a rare but not impossible phenomenon.Key words: mitochondrial DNA inheritance, mitochondrial DNA tissue distribution, blue mussels, gender-specific mtDNA, doubly uniparental inheritance of mtDNA, Mytilus.


2013 ◽  
Vol 5 (7) ◽  
pp. 1408-1434 ◽  
Author(s):  
Liliana Milani ◽  
Fabrizio Ghiselli ◽  
Davide Guerra ◽  
Sophie Breton ◽  
Marco Passamonti

Sign in / Sign up

Export Citation Format

Share Document