scholarly journals Doubly uniparental inheritance of mitochondrial DNA in freshwater mussels: History and status of the European species

2020 ◽  
Vol 58 (2) ◽  
pp. 598-614
Author(s):  
Marianna Soroka
Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 883-894
Author(s):  
Liqin Cao ◽  
Ellen Kenchington ◽  
Eleftherios Zouros

Abstract In Mytilus, females carry predominantly maternal mitochondrial DNA (mtDNA) but males carry maternal mtDNA in their somatic tissues and paternal mtDNA in their gonads. This phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, presents a major departure from the uniparental transmission of organelle genomes. Eggs of Mytilus edulis from females that produce exclusively daughters and from females that produce mostly sons were fertilized with sperm stained with MitoTracker Green FM, allowing observation of sperm mitochondria in the embryo by epifluorescent and confocal microscopy. In embryos from females that produce only daughters, sperm mitochondria are randomly dispersed among blastomeres. In embryos from females that produce mostly sons, sperm mitochondria tend to aggregate and end up in one blastomere in the two- and four-cell stages. We postulate that the aggregate eventually ends up in the first germ cells, thus accounting for the presence of paternal mtDNA in the male gonad. This is the first evidence for different behaviors of sperm mitochondria in developing embryos that may explain the tight linkage between gender and inheritance of paternal mitochondrial DNA in species with DUI.


Author(s):  
Donald T. Stewart ◽  
Chloe M. Stephenson ◽  
Ljiljana M. Stanton ◽  
Emily E. Chase ◽  
Brent M. Robicheau ◽  
...  

Many freshwater mussels (Order Unionida) have an unusual system of doubly uniparental inheritance (DUI) of mitochondrial (mt) DNA. In species with DUI, males possess a female-transmitted (F-type) mt genome and a male-transmitted (M-type) mt genome. These genomes contain non-canonical open reading frame (orf) genes referred to as f-orf and m-orf, present in F and M mt genomes, respectively. These genes have been implicated in sexual development in Unionida. When gonochoric species become hermaphroditic, which has happened several times in Unionida, they lose their M-type mt genome, and f-orf genes evolve dramatically. Resulting F-ORF proteins are highly divergent in terms of primary nucleotide sequence, inferred amino acids, and hydrophobic properties; these genes (and proteins) are referred to as hermaphroditic orfs or h-orfs (and H-ORFs). We investigated patterns of hydrophobicity divergence for H-ORF proteins in hermaphrodites versus F-ORF proteins in closely related gonochoric species against cytochrome c oxidase subunit 1 (cox1) divergences. This approach was used to assess whether cryptic hermaphrodites can be detected. Although we did not detect evidence for the recent transition of any populations of Eastern Floaters, Pyganodon cataracta (Say, 1817) to hermaphroditism, our analyses demonstrate that molecular signatures in mtDNA can be used to detect hermaphroditism in freshwater mussels.


Genome ◽  
1998 ◽  
Vol 41 (6) ◽  
pp. 818-824 ◽  
Author(s):  
Manuel A Garrido-Ramos ◽  
Donald T Stewart ◽  
Brent W Sutherland ◽  
Eleftherios Zouros

We have examined the mitochondrial DNA (mtDNA) content of several somatic tissues from male and female individuals of the blue mussel, Mytilus edulis. As expected from the mode of doubly uniparental inheritance (DUI) of mtDNA that is characteristic of this genus, the dominant type of mtDNA in male gonads was the male-transmitted M type. In contrast, all male somatic tissues were dominated by the female-transmitted F type. The M type could occasionally be detected in one or another tissue of a few female individuals. The findings have several implications for the operation of doubly uniparental inheritance of mitochondrial DNA, among which the most important are (i) the M genome does not have an unconditional replicative advantage over the F genome, and (ii) in contrast to "masculinization" (the process by which an F molecule assumes the role of the M genome) "feminization" (the process by which an M molecule assumes the role of the F genome) might be a rare but not impossible phenomenon.Key words: mitochondrial DNA inheritance, mitochondrial DNA tissue distribution, blue mussels, gender-specific mtDNA, doubly uniparental inheritance of mtDNA, Mytilus.


2018 ◽  
Author(s):  
Sébastien Renaut ◽  
Davide Guerra ◽  
Walter R. Hoeh ◽  
Donald T. Stewart ◽  
Arthur E. Bogan ◽  
...  

AbstractFreshwater mussels (Bivalvia: Unionida) serve an important role as aquatic ecosystem engineers but are one of the most critically imperilled groups of animals. Here, we used a combination of sequencing strategies to assemble and annotate a draft genome of Venustaconcha ellipsiformis, which will serve as a valuable genomic resource given the ecological value and unique “doubly uniparental inheritance” mode of mitochondrial DNA transmission of freshwater mussels. The genome described here was obtained by combining high coverage short reads (65X genome coverage of Illumina paired-end and 11X genome coverage of mate-pairs sequences) with low coverage Pacific Biosciences long reads (0.3X genome coverage). Briefly, the final scaffold assembly accounted for a total size of 1.54Gb (366,926 scaffolds, N50 = 6.5Kb, with 2.3% of “N” nucleotides), representing 86% of the predicted genome size of 1.80Gb, while over one third of the genome (37.5%) consisted of repeated elements and more than 85% of the core eukaryotic genes were recovered. Given the repeated genetic bottlenecks of V. ellipsiformis populations as a result of glaciations events, heterozygosity was also found to be remarkably low (0.6%), in contrast to most other sequenced bivalve species. Finally, we reassembled the full mitochondrial genome and found six polymorphic sites with respect to the previously published reference. This resource opens the way to comparative genomics studies to identify genes related to the unique adaptations of freshwater mussels and their distinctive mitochondrial inheritance mechanism.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5007 ◽  
Author(s):  
Brent M. Robicheau ◽  
Emily E. Chase ◽  
Walter R. Hoeh ◽  
John L. Harris ◽  
Donald T. Stewart ◽  
...  

Freshwater mussels (order: Unionida) represent one of the most critically imperilled groups of animals; consequently, there exists a need to establish a variety of molecular markers for population genetics and systematic studies in this group. Recently, two novel mitochondrial protein-coding genes were described in unionoids with doubly uniparental inheritance of mtDNA. These genes are thef-orfin female-transmitted mtDNA and them-orfin male-transmitted mtDNA. In this study, whole F-type mitochondrial genome sequences of two morphologically similarLampsilisspp. were compared to identify the most divergent protein-coding regions, including thef-orfgene, and evaluate its utility for population genetic and phylogeographic studies in the subfamily Ambleminae. We also tested whether thef-orfgene is phylogenetically informative at the species level. Our preliminary results indicated that thef-orfgene could represent a viable molecular marker for population- and species-level studies in freshwater mussels.


Sign in / Sign up

Export Citation Format

Share Document