Initial conditions for the cylindrical Korteweg‐de Vries equation

2019 ◽  
Vol 143 (2) ◽  
pp. 176-191 ◽  
Author(s):  
Roger Grimshaw
1984 ◽  
Vol 141 ◽  
pp. 455-466 ◽  
Author(s):  
T. R. Akylas

A study is made of the wave disturbance generated by a localized steady pressure distribution travelling at a speed close to the long-water-wave phase speed on water of finite depth. The linearized equations of motion are first used to obtain the large-time asymptotic behaviour of the disturbance in the far field; the linear response consists of long waves with temporally growing amplitude, so that the linear approximation eventually breaks down owing to finite-amplitude effects. A nonlinear theory is developed which shows that the generated waves are actually of bounded amplitude, and are governed by a forced Korteweg-de Vries equation subject to appropriate asymptotic initial conditions. A numerical study of the forced Korteweg-de Vries equation reveals that a series of solitons are generated in front of the pressure distribution.


2020 ◽  
Vol 2020 (2) ◽  
pp. 85-98
Author(s):  
A.B. Khasanov ◽  
T.J. Allanazarova
Keyword(s):  
De Vries ◽  

Author(s):  
Giuseppe Maria Coclite ◽  
Lorenzo di Ruvo

The Rosenau-Korteweg-de Vries equation describes the wave-wave and wave-wall interactions. In this paper, we prove that, as the diffusion parameter is near zero, it coincides with the Korteweg-de Vries equation. The proof relies on deriving suitable a priori estimates together with an application of the Aubin-Lions Lemma.


2021 ◽  
Vol 1978 (1) ◽  
pp. 012031
Author(s):  
Ningbo Guo ◽  
Yaming Chen ◽  
Xiaogang Deng

Sign in / Sign up

Export Citation Format

Share Document