pressure distribution
Recently Published Documents


TOTAL DOCUMENTS

4824
(FIVE YEARS 762)

H-INDEX

70
(FIVE YEARS 8)

2022 ◽  
Vol 3 (1) ◽  
pp. 37-45
Author(s):  
Jimit Patel ◽  
◽  
G. M. Deheri ◽  

This paper deals with a theoretical analysis on the effect of viscosity variation on a ferrofluid based long bearing. The model of Tipei considering viscosity variation is deployed here. The magnetic fluid flow is governed by Neuringer-Rosensweig model. The pressure distribution is obtained after solving the associated Reynolds type equation, which gives the load carrying capacity. The computed results indicate that the increased load carrying capacity owing to magnetization gets negligible help from the effect of viscosity variation.


Author(s):  
Frederick Mun ◽  
Ahnryul Choi

Abstract Background Foot pressure distribution can be used as a quantitative parameter for evaluating anatomical deformity of the foot and for diagnosing and treating pathological gait, falling, and pressure sores in diabetes. The objective of this study was to propose a deep learning model that could predict pressure distribution of the whole foot based on information obtained from a small number of pressure sensors in an insole. Methods Twenty young and twenty older adults walked a straight pathway at a preferred speed with a Pedar-X system in anti-skid socks. A long short-term memory (LSTM) model was used to predict foot pressure distribution. Pressure values of nine major sensors and the remaining 90 sensors in a Pedar-X system were used as input and output for the model, respectively. The performance of the proposed LSTM structure was compared with that of a traditionally used adaptive neuro-fuzzy interference system (ANFIS). A low-cost insole system consisting of a small number of pressure sensors was fabricated. A gait experiment was additionally performed with five young and five older adults, excluding subjects who were used to construct models. The Pedar-X system placed parallelly on top of the insole prototype developed in this study was in anti-skid socks. Sensor values from a low-cost insole prototype were used as input of the LSTM model. The accuracy of the model was evaluated by applying a leave-one-out cross-validation. Results Correlation coefficient and relative root mean square error (RMSE) of the LSTM model were 0.98 (0.92 ~ 0.99) and 7.9 ± 2.3%, respectively, higher than those of the ANFIS model. Additionally, the usefulness of the proposed LSTM model for fabricating a low-cost insole prototype with a small number of sensors was confirmed, showing a correlation coefficient of 0.63 to 0.97 and a relative RMSE of 12.7 ± 7.4%. Conclusions This model can be used as an algorithm to develop a low-cost portable smart insole system to monitor age-related physiological and anatomical alterations in foot. This model has the potential to evaluate clinical rehabilitation status of patients with pathological gait, falling, and various foot pathologies when more data of patients with various diseases are accumulated for training.


2022 ◽  
Author(s):  
Laura Piho ◽  
Andreas Alexander ◽  
Maarja Kruusmaa

Abstract. Glacier hydrology describes water movement over, through and under glaciers and ice sheets. Water reaching the ice bed influences ice motion and ice dynamical models, therefore requiring a good understanding of glacier hydrology, particularly water pressures and pathways. However, as in situ observations are sparse and methods for direct observations of water pathways and internal pressures are lacking, our understanding of the aforementioned pathways and pressure remains limited. Here, we present a method that allows the reconstruction of planar subsurface water flow paths and spatially reference water pressures. We showcase this method by reconstructing the 2D topology and the water pressure distribution of an englacial channel in Austre Brøggerbreen (Svalbard). The approach uses inertial measurements from submersible sensing drifters and reconstructs the flow path between given start and end coordinates. Validation on a supraglacial channel shows an average length error of 3.9 m (5.3 %). At the englacial channel, the average length error is 107 m (11.6 %) and the average pressure error 3.4 hPa (0.3 %). Our method allows mapping sub- and englacial flow paths and the pressure distribution within, thereby facilitating hydrological model validation. Further, our method also allows the reconstruction of other, previously unexplored, subsurface fluid flow paths.


Geofluids ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Lijia Zhong ◽  
Fengyin Liu ◽  
Bo Wang ◽  
Zhao Yang ◽  
Dong Zhou

The pressure distribution law of muddy water with high silt content has great influence on the stress and strain calculation of the dam body. Currently, there is a few research studies referring to the calculation method of high silt content muddy water pressure, which leads to no reliable theoretical basis for muddy water pressure calculation in dam design. In this paper, muddy water with high silt content was prepared and the imitation tests and model tests were carried out to investigate the pressure distribution law. Based on the test result analysis, it is indicated that the muddy water with high silt content is also in a flowable and viscous state, which is consistent with the law of fluid behavior; the horizontal pressure is equal to the vertical pressure at the same position, and this relationship is generally time independent; through the test result analysis, a pressure formula for muddy water with high silt content is proposed; through comparison between the pressure formula-calculated results and monitoring data, it is indicated that the proposed pressure formula is applicable in the calculation of muddy water pressure. The formula can be a useful tool in the dam safety and design calculation.


2022 ◽  
Author(s):  
Patrick Cragg ◽  
Friedolin T. Strauss ◽  
Stephan General ◽  
Stefan Schlechtriem

2021 ◽  
Vol 9 (12) ◽  
pp. 725-732
Author(s):  
Rajeev Mishra

In this paper, studies have been made on some self-superposable motion of incompressible fluid is confocal Paraboloidal ducts. The boundary conditions have been neglected therefore the solutions contain a set of constants. Pressure distribution and the nature of vorticity are discussed. Tendency of irrotationality of the fluid flow is also determined. The aim of the paper is to introduce a method for solving the basic equations of fluid dynamics in confocal paraboloidal coordinates by using the property of self superposability.


Sign in / Sign up

Export Citation Format

Share Document