scholarly journals Norm estimations, continuity, and compactness for Khatri-Rao products of Hilbert Space operators

2018 ◽  
Vol 14 (4) ◽  
pp. 382-386
Author(s):  
Arnon Ploymukda ◽  
Pattrawut Chansangiam

We provide estimations for the operator norm, the trace norm, and the Hilbert-Schmidt norm for Khatri-Rao products of Hilbert space operators. It follows that the Khatri-Rao product is continuous on norm ideals of compact operators equipped with the topologies induced by such norms. Moreover, if two operators are represented by block matrices in which each block is nonzero, then their Khatri-Rao product is compact if and only if both operators are compact. The Khatri-Rao product of two operators are trace-class (Hilbert-Schmidt class) if and only if each factor is trace-class (Hilbert-Schmidt class, respectively).

2005 ◽  
Vol 2005 (14) ◽  
pp. 2175-2193 ◽  
Author(s):  
Pachara Chaisuriya ◽  
Sing-Cheong Ong

For each triple of positive numbersp,q,r≥1and each commutativeC*-algebraℬwith identity1and the sets(ℬ)of states onℬ, the set𝒮r(ℬ)of all matricesA=[ajk]overℬsuch thatϕ[A[r]]:=[ϕ(|ajk|r)]defines a bounded operator fromℓptoℓqfor allϕ∈s(ℬ)is shown to be a Banach algebra under the Schur product operation, and the norm‖A‖=‖|A|‖p,q,r=sup{‖ϕ[A[r]]‖1/r:ϕ∈s(ℬ)}. Schatten's theorems about the dual of the compact operators, the trace-class operators, and the decomposition of the dual of the algebra of all bounded operators on a Hilbert space are extended to the𝒮r(ℬ)setting.


1987 ◽  
Vol 29 (2) ◽  
pp. 245-248 ◽  
Author(s):  
Fuad Kittaneh

Let H denote a separable, infinite dimensional Hilbert space. Let B(H), C2 and C1 denote the algebra of all bounded linear operators acting on H, the Hilbert–Schmidt class and the trace class in B(H) respectively. It is well known that C2 and C1 each form a two-sided-ideal in B(H) and C2 is itself a Hilbert space with the inner productwhere {ei} is any orthonormal basis of H and tr(.) is the natural trace on C1. The Hilbert–Schmidt norm of X ∈ C2 is given by ⅡXⅡ2=(X, X)½.


1989 ◽  
Vol 31 (2) ◽  
pp. 161-163
Author(s):  
Feng Wenying ◽  
Ji Guoxing

Let B(H) be the algebra of all bounded linear operators on a separable, infinite dimensional complex Hilbert space H. Let C2 and C1 denote respectively, the Hilbert–Schmidt class and the trace class operators in B(H). It is known that C2 and C1 are two-sided*-ideals in B(H) and C2 is a Hilbert space with respect to the inner product(where tr denotes the trace). For any Hilbert–Schmidt operator X let ∥X∥2=(X, X)½ be the Hilbert-Schmidt norm of X.For fixed A ∈ B(H) let δA be the operator on B(H) defined byOperators of the form (1) are called inner derivations and they (as well as their restrictions have been extensively studied (for example [1–3]). In [1], Fuad Kittaneh proved the following result.


2015 ◽  
Vol 58 (1) ◽  
pp. 207-224 ◽  
Author(s):  
Ali Zamani ◽  
Mohammad Sal Moslehian

AbstractExtending the notion of parallelism we introduce the concept of approximate parallelism in normed spaces and then substantially restrict ourselves to the setting of Hilbert space operators endowed with the operator norm. We present several characterizations of the exact and approximate operator parallelism in the algebra B(ℋ) of bounded linear operators acting on a Hilbert space H . Among other things, we investigate the relationship between the approximate parallelism and norm of inner derivations on B(ℋ). We also characterize the parallel elements of a C*-algebra by using states. Finally we utilize the linking algebra to give some equivalent assertions regarding parallel elements in a Hilbert C*-module.


2014 ◽  
Vol 57 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Jean-Christophe Bourin ◽  
Tetsuo Harada ◽  
Eun-Young Lee

AbstractSome subadditivity inequalities for matrices and concave functions also hold for Hilbert space operators, but (unfortunately!) with an additional ε term. It does not seem possible to erase this residual term. However, in case of compact operators we show that the ε term is unnecessary. Further, these inequalities are strict in a certain sense when some natural assumptions are satisfied. The discussion also emphasizes matrices and their compressions and several open questions or conjectures are considered, both in the matrix and operator settings.


1987 ◽  
Vol 29 (1) ◽  
pp. 99-104 ◽  
Author(s):  
Fuad Kittaneh

This paper is a continuation of [3] in which some inequalities for the Schatten p-norm were considered. The purpose of the present paper is to improve some inequalities in [3] as well as to give more inequalities in the same spirit.Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators acting on H. Let K(H) denote the closed two-sided ideal of compact operators on H. For any compact operator A, let |A| = (A*A)½ and s1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeated according to multiplicity. A compact operator A is said to be in the Schatten p-class Cp(1 ≤ p < ∞), if Σ s1(A)p < ∞. The Schatten p-norm of A is defined by ∥A∥p = (Σ si(A)p)1/p. This norm makes Cp into a Banach space. Hence C1 is the trace class and C2 is the Hilbert-Schmidt class. It is reasonable to let C∞ denote the ideal of compact operators K(H), and ∥.∥∞ stand for the usual operator norm.


1985 ◽  
Vol 26 (2) ◽  
pp. 141-143 ◽  
Author(s):  
Fuad Kittaneh

Let H be a separable, infinite dimensional complex Hilbert space, and let B(H) denote the algebra of all bounded linear operators on H. Let K(H) denote the ideal of compact operators on H. For any compact operator A let |A|=(A*A)1,2 and S1(A), s2(A),… be the eigenvalues of |A| in decreasing order and repeatedaccording to multiplicity. If, for some 1<p<∞, si(A)p <∞, we say that A is in the Schatten p-class Cp and ∥A∥p=1/p is the p-norm of A. Hence, C1 is the trace class, C2 is the Hilbert–Schmidt class, and C∞ is the ideal of compact operators K(H).


1991 ◽  
Vol 34 (2) ◽  
pp. 260-264 ◽  
Author(s):  
M. Radjabalipour

AbstractIf A is a norm closed algebra of compact operators on a Hilbert space and if its Jacobson radical J(A) consists of all quasinilpotent operators in A then A/ J(A) is commutative. The result is not valid for a general algebra of polynomially compact operators.


Sign in / Sign up

Export Citation Format

Share Document