scholarly journals Period sheaves via derived de Rham cohomology

2021 ◽  
Vol 157 (11) ◽  
pp. 2377-2406
Author(s):  
Haoyang Guo ◽  
Shizhang Li
Keyword(s):  

Abstract In this paper we give an interpretation, in terms of derived de Rham complexes, of Scholze's de Rham period sheaf and Tan and Tong's crystalline period sheaf.

1989 ◽  
Vol 22 (1) ◽  
pp. 249-272 ◽  
Author(s):  
Wiesław Sasin

Author(s):  
Federico Scavia

Abstract Building upon work of Epstein, May and Drury, we define and investigate the mod p Steenrod operations on the de Rham cohomology of smooth algebraic stacks over a field of characteristic $p>0$ . We then compute the action of the operations on the de Rham cohomology of classifying stacks for finite groups, connected reductive groups for which p is not a torsion prime and (special) orthogonal groups when $p=2$ .


2018 ◽  
Vol 154 (4) ◽  
pp. 850-882
Author(s):  
Yunqing Tang

In his 1982 paper, Ogus defined a class of cycles in the de Rham cohomology of smooth proper varieties over number fields. This notion is a crystalline analogue of$\ell$-adic Tate cycles. In the case of abelian varieties, this class includes all the Hodge cycles by the work of Deligne, Ogus, and Blasius. Ogus predicted that such cycles coincide with Hodge cycles for abelian varieties. In this paper, we confirm Ogus’ prediction for some families of abelian varieties. These families include geometrically simple abelian varieties of prime dimension that have non-trivial endomorphism ring. The proof uses a crystalline analogue of Faltings’ isogeny theorem due to Bost and the known cases of the Mumford–Tate conjecture.


1998 ◽  
Vol 48 (5) ◽  
pp. 1379-1393 ◽  
Author(s):  
Robert F. Coleman

Author(s):  
Ihsane Malass ◽  
Nikolai Tarkhanov

We discuss canonical representations of the de Rham cohomology on a compact manifold with boundary. They are obtained by minimising the energy integral in a Hilbert space of differential forms that belong along with the exterior derivative to the domain of the adjoint operator. The corresponding Euler- Lagrange equations reduce to an elliptic boundary value problem on the manifold, which is usually referred to as the Neumann problem after Spencer


Sign in / Sign up

Export Citation Format

Share Document