The Harmonious Chromatic Number of Bounded Degree Graphs

1997 ◽  
Vol 55 (3) ◽  
pp. 435-447 ◽  
Author(s):  
Keith Edwards
2017 ◽  
Vol 27 (4) ◽  
pp. 623-642 ◽  
Author(s):  
NINA KAMČEV ◽  
TOMASZ ŁUCZAK ◽  
BENNY SUDAKOV

A sequenceSis calledanagram-freeif it contains no consecutive symbolsr1r2. . .rkrk+1. . .r2ksuch thatrk+1. . .r2kis a permutation of the blockr1r2. . .rk. Answering a question of Erdős and Brown, Keränen constructed an infinite anagram-free sequence on four symbols. Motivated by the work of Alon, Grytczuk, Hałuszczak and Riordan [2], we consider a natural generalization of anagram-free sequences for graph colourings. A colouring of the vertices of a given graphGis calledanagram-freeif the sequence of colours on any path inGis anagram-free. We call the minimal number of colours needed for such a colouring theanagram-chromaticnumber ofG.In this paper we study the anagram-chromatic number of several classes of graphs like trees, minor-free graphs and bounded-degree graphs. Surprisingly, we show that there are bounded-degree graphs (such as random regular graphs) in which anagrams cannot be avoided unless we essentially give each vertex a separate colour.


2021 ◽  
Author(s):  
Sriram Bhyravarapu ◽  
Subrahmanyam Kalyanasundaram ◽  
Rogers Mathew

Mathematika ◽  
2020 ◽  
Vol 66 (2) ◽  
pp. 422-447 ◽  
Author(s):  
Julia Böttcher ◽  
Richard Montgomery ◽  
Olaf Parczyk ◽  
Yury Person

2002 ◽  
Vol 20 (1) ◽  
pp. 98-114 ◽  
Author(s):  
Martin Dyer ◽  
Catherine Greenhill ◽  
Mike Molloy

Sign in / Sign up

Export Citation Format

Share Document