bounded degree graphs
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 26)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 68 (6) ◽  
pp. 1-33
Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Cyril Gavoille ◽  
Gwenaël Joret ◽  
Piotr Micek ◽  
...  

We show that there exists an adjacency labelling scheme for planar graphs where each vertex of an n -vertex planar graph G is assigned a (1 + o(1)) log 2 n -bit label and the labels of two vertices u and v are sufficient to determine if uv is an edge of G . This is optimal up to the lower order term and is the first such asymptotically optimal result. An alternative, but equivalent, interpretation of this result is that, for every positive integer n , there exists a graph U n with n 1+o(1) vertices such that every n -vertex planar graph is an induced subgraph of U n . These results generalize to a number of other graph classes, including bounded genus graphs, apex-minor-free graphs, bounded-degree graphs from minor closed families, and k -planar graphs.


2021 ◽  
Author(s):  
Michał Dębski ◽  
Piotr Micek ◽  
Felix Schröder ◽  
Stefan Felsner

A vertex coloring $\phi$ of a graph $G$ is $p$-centered if for every connected subgraph $H$ of $G$ either $\phi$ uses more than $p$ colors on $H$ or there is a color that appears exactly once on $H$. Centered colorings form one of the families of parameters that allow to capture notions of sparsity of graphs: A class of graphs has bounded expansion if and only if there is a function $f$ such that for every $p\geq1$, every graph in the class admits a $p$-centered coloring using at most $f(p)$ colors. In this paper, we give upper bounds for the maximum number of colors needed in a $p$-centered coloring of graphs from several widely studied graph classes. We show that: (1) planar graphs admit $p$-centered colorings with $O(p^3\log p)$ colors where the previous bound was $O(p^{19})$; (2) bounded degree graphs admit $p$-centered colorings with $O(p)$ colors while it was conjectured that they may require exponential number of colors. All these upper bounds imply polynomial algorithms for computing the colorings. Prior to this work there were no non-trivial lower bounds known. We show that: (4) there are graphs of treewidth $t$ that require $\binom{p+t}{t}$ colors in any $p$-centered coloring. This bound matches the upper bound; (5) there are planar graphs that require $\Omega(p^2\log p)$ colors in any $p$-centered coloring. We also give asymptotically tight bounds for outerplanar graphs and planar graphs of treewidth $3$. We prove our results with various proof techniques. The upper bound for planar graphs involves an application of a recent structure theorem while the upper bound for bounded degree graphs comes from the entropy compression method. We lift the result for bounded degree graphs to graphs avoiding a fixed topological minor using the Grohe-Marx structure theorem.


2021 ◽  
Vol vol. 23 no. 1 (Graph Theory) ◽  
Author(s):  
Niels Grüttemeier ◽  
Christian Komusiewicz ◽  
Jannik Schestag ◽  
Frank Sommer

We introduce and study the Bicolored $P_3$ Deletion problem defined as follows. The input is a graph $G=(V,E)$ where the edge set $E$ is partitioned into a set $E_r$ of red edges and a set $E_b$ of blue edges. The question is whether we can delete at most $k$ edges such that $G$ does not contain a bicolored $P_3$ as an induced subgraph. Here, a bicolored $P_3$ is a path on three vertices with one blue and one red edge. We show that Bicolored $P_3$ Deletion is NP-hard and cannot be solved in $2^{o(|V|+|E|)}$ time on bounded-degree graphs if the ETH is true. Then, we show that Bicolored $P_3$ Deletion is polynomial-time solvable when $G$ does not contain a bicolored $K_3$, that is, a triangle with edges of both colors. Moreover, we provide a polynomial-time algorithm for the case that $G$ contains no blue $P_3$, red $P_3$, blue $K_3$, and red $K_3$. Finally, we show that Bicolored $P_3$ Deletion can be solved in $ O(1.84^k\cdot |V| \cdot |E|)$ time and that it admits a kernel with $ O(k\Delta\min(k,\Delta))$ vertices, where $\Delta$ is the maximum degree of $G$. Comment: 25 pages


Author(s):  
László Lovász

AbstractThe theory of graph limits is only understood to a somewhat satisfactory degree in the cases of dense graphs and of bounded degree graphs. There is, however, a lot of interest in the intermediate cases. It appears that one of the most important constituents of graph limits in the general case will be Markov spaces (Markov chains on measurable spaces with a stationary distribution). This motivates our goal to extend some important theorems from finite graphs to Markov spaces or, more generally, to measurable spaces. In this paper, we show that much of flow theory, one of the most important areas in graph theory, can be extended to measurable spaces. Surprisingly, even the Markov space structure is not fully needed to get these results: all we need a standard Borel space with a measure on its square (generalizing the finite node set and the counting measure on the edge set). Our results may be considered as extensions of flow theory for directed graphs to the measurable case.


2021 ◽  
Author(s):  
Sriram Bhyravarapu ◽  
Subrahmanyam Kalyanasundaram ◽  
Rogers Mathew

Sign in / Sign up

Export Citation Format

Share Document