maximum matching
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 46)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Xianjin Shi ◽  
Xiajiong Shen

Recent studies have shown that compared with traditional social networks, networks in which users socialize through interest recommendation have obvious homogeneity characteristics. Recommending topics of interest to users has become one of the main objectives of recommendation systems in such social networks, and the widespread data sparsity in such social networks has become the main problem faced by such recommendation systems. Particularly, in the oracle interest network, this problem is more difficult to solve because there are very few people who read and understand the Oracle. To address this problem, we propose an ant colony algorithm based recognition algorithm that can greatly expand the data in the oracle interest network and thus improve the efficiency of oracle interest network recommendation in this paper. Using the one-to-one correspondence between characters and translation in Oracle rubbings, the Oracle recognition problem is transformed into character matching problem, which can skip manual feature engineering experts, so as to realize efficient Oracle recognition. First, the coordinates of each character in the oracle bones are extracted. Then, the matching degree value of each oracle character corresponding to the translation of the oracle rubbings is assigned according to the coordinates. Finally, the maximum matching degree value of each character is searched using the improved ant colony algorithm, and the search result is the Chinese character corresponding to the oracle rubbings. In this paper, through experimental simulation, it is proved that this method is very effective when applied to the field of oracle recognition, and the recognition rate can approach 100% in some special oracle rubbings.


2021 ◽  
Author(s):  
Nisheeth K. Vishnoi

In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.


2021 ◽  
Author(s):  
Hang Su ◽  
Hanqing Zhou ◽  
Haixiong Lv ◽  
Chunlei Zhang ◽  
Xin Ding ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yiqian Li ◽  
Tao Du ◽  
Lianjiang Zhu ◽  
Shouning Qu

Text segmentation of the URL domain name is a straightforward and convenient method to analyze users’ online behaviors and is crucial to determine their areas of interest. However, the performance of popular word segmentation tools is relatively low due to the unique structure of the website domain name (such as extremely short lengths, irregular names, and no contextual relationship). To address this issue, this paper proposes an efficient minimal text segmentation (EMTS) method for URL domain names to achieve efficient adaptive text mining. We first designed a targeted hierarchical task model to reduce noise interference in minimal texts. We then presented a novel method of integrating conflict game into the two-directional maximum matching algorithm, which can make the words with higher weight and greater probability to be selected, thereby enhancing the accuracy of recognition. Next, Chinese Pinyin and English mapping were embedded in the word segmentation rules. Besides, we incorporated a correction factor that considers the text length into the F1-score to optimize the performance evaluation of text segmentation. The experimental results show that the EMTS yielded around 20 percentage points improvement with other word segmentation tools in terms of accuracy and topic extraction, providing high-quality data for the subsequent text analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Amir Chaaf ◽  
Mohammed Saleh Ali Muthanna ◽  
Ammar Muthanna ◽  
Soha Alhelaly ◽  
Ibrahim A. Elgendy ◽  
...  

Underwater wireless sensor networks (UWSNs) enable various oceanic applications which require effective packet transmission. In this case, sparse node distribution, imbalance in terms of overall energy consumption between the different sensor nodes, dynamic network topology, and inappropriate selection of relay nodes cause void holes. Addressing this problem, we present a relay-based void hole prevention and repair (ReVOHPR) protocol by multiple autonomous underwater vehicles (AUVs) for UWSN. ReVOHPR is a global solution that implements different phases of operations that act mutually in order to efficiently reduce and identify void holes and trap relay nodes to avoid it. ReVOHPR adopts the following operations as ocean depth (levels)-based equal cluster formation, dynamic sleep scheduling, virtual graph-based routing, and relay-assisted void hole repair. For energy-efficient cluster forming, entropy-based eligibility ranking (E2R) is presented, which elects stable cluster heads (CHs). Then, dynamic sleep scheduling is implemented by the dynamic kernel Kalman filter (DK2F) algorithm in which sleep and active modes are based on the node’s current status. Intercluster routing is performed by maximum matching nodes that are selected by dual criteria, and also the data are transmitted to AUV. Finally, void holes are detected and repaired by the bicriteria mayfly optimization (BiCMO) algorithm. The BiCMO focuses on reducing the number of holes and data packet loss and maximizes the quality of service (QoS) and energy efficiency of the network. This protocol is timely dealing with node failures in packet transmission via multihop routing. Simulation is implemented by the NS3 (AquaSim module) simulator that evaluates the performance in the network according to the following metrics: average energy consumption, delay, packet delivery rate, and throughput. The simulation results of the proposed REVOHPR protocol comparing to the previous protocols allowed to conclude that the REVOHPR has considerable advantages. Due to the development of a new protocol with a set of phases for data transmission, energy consumption minimization, and void hole avoidance and mitigation in UWSN, the number of active nodes rate increases with the improvement in overall QoS.


Author(s):  
Amir Chaaf ◽  
Mohammed Saleh Ali Muthanna ◽  
Ammar Muthanna ◽  
Soha Alhelaly ◽  
Ibrahim A. Elgendy ◽  
...  

Underwater Wireless Sensor Networks (UWSN) enables various oceanic applications which require effective packet transmission. In this case, sparse node distribution, dynamic network topology and inappropriate selection of relay nodes cause void holes. Addressing this problem, we present a Relay based Void Hole Prevention and Repair protocol (ReVOHPR) by multiple Autonomous Underwater Vehicles (AUV) for UWSN. ReVOHPR efficiently identifies and avoids void holes and trap relay nodes to avoid it. ReVOHPR adopts the following operations as Ocean Depth (levels) based Equal Cluster Formation, Dynamic Sleep Scheduling, Virtual Graph based Routing, and Relay Assisted Void Hole Repair. For energy efficient cluster forming, Entropy based Eligibility Ranking (E2R) is presented which elects stable cluster heads (CHs). Then, dynamic sleep scheduling is implemented Dynamic Kernel Kalman Filter (DK2F) algorithm in which Sleep and Active modes based on the nodes current status. Inter Cluster Routing is performed by maximum matching nodes which selects by Dual criteria and also data transmitted to AUV. Finally, void holes are detected and repair by Bi-Criteria Mayfly Optimization (BiCMO) algorithm. The BiCMO focuses on reducing the number of holes, data packet loss and maximizes Quality of Service (QoS) and energy efficiency of the networks. This protocol is timely deal with node failures in packet transmission via multi-hop routing. Simulation is implemented by NS3 (AquaSim module) simulator that evaluates the performance in network simulation for following metrics as average energy consumption, delay, packet delivery rate and throughput.


2021 ◽  
Vol 26 ◽  
pp. 1-30
Author(s):  
Tomohiro Koana ◽  
Viatcheslav Korenwein ◽  
André Nichterlein ◽  
Rolf Niedermeier ◽  
Philipp Zschoche

Finding a maximum-cardinality or maximum-weight matching in (edge-weighted) undirected graphs is among the most prominent problems of algorithmic graph theory. For n -vertex and m -edge graphs, the best-known algorithms run in Õ( m √ n ) time. We build on recent theoretical work focusing on linear-time data reduction rules for finding maximum-cardinality matchings and complement the theoretical results by presenting and analyzing (thereby employing the kernelization methodology of parameterized complexity analysis) new (near-)linear-time data reduction rules for both the unweighted and the positive-integer-weighted case. Moreover, we experimentally demonstrate that these data reduction rules provide significant speedups of the state-of-the art implementations for computing matchings in real-world graphs: the average speedup factor is 4.7 in the unweighted case and 12.72 in the weighted case.


Author(s):  
Michael Kapralov ◽  
Gilbert Maystre ◽  
Jakab Tardos
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document