scholarly journals Numerical Evidence for a Conjectural Generalization of Hilbert's Theorem 132

2003 ◽  
Vol 6 ◽  
pp. 68-88
Author(s):  
W. Bley

AbstractThis paper presents an algorithm for computing numerical evidence for a conjecture whose validity is predicted by the requirement that the equivariant Tamagawa number conjectures for Tate motives as formulated by Burns and Flach are compatible with the functional equation of the Artin L-series. The algorithm includes methods for the computation of Fitting ideals and projective lattices over the integral group ring.

1990 ◽  
Vol 42 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Frank Röhl

In [5], Roggenkamp and Scott gave an affirmative answer to the isomorphism problem for integral group rings of finite p-groups G and H, i.e. to the question whether ZG ⥲ ZH implies G ⥲ H (in this case, G is said to be characterized by its integral group ring). Progress on the analogous question with Z replaced by the field Fp of p elements has been very little during the last couple of years; and the most far reaching result in this area in a certain sense - due to Passi and Sehgal, see [8] - may be compared to the integral case, where the group G is of nilpotency class 2.


2000 ◽  
Vol 43 (1) ◽  
pp. 60-62 ◽  
Author(s):  
Daniel R. Farkas ◽  
Peter A. Linnell

AbstractLet G be an arbitrary group and let U be a subgroup of the normalized units in ℤG. We show that if U contains G as a subgroup of finite index, then U = G. This result can be used to give an alternative proof of a recent result of Marciniak and Sehgal on units in the integral group ring of a crystallographic group.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250016 ◽  
Author(s):  
VICTOR BOVDI ◽  
ALEXANDER KONOVALOV

We study the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group M24. As a consequence, for this group we give a positive answer to the question by Kimmerle about prime graphs.


2011 ◽  
Vol 10 (04) ◽  
pp. 711-725 ◽  
Author(s):  
J. Z. GONÇALVES ◽  
D. S. PASSMAN

Let ℤG be the integral group ring of the finite nonabelian group G over the ring of integers ℤ, and let * be an involution of ℤG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (uk, m(x), uk, m(x*)) or (uk, m(x), uk, m(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ℤG.


1998 ◽  
Vol 50 (2) ◽  
pp. 401-411 ◽  
Author(s):  
Yuanlin Li

AbstractIn this paper, we first show that the central height of the unit group of the integral group ring of a periodic group is at most 2. We then give a complete characterization of the n-centre of that unit group. The n-centre of the unit group is either the centre or the second centre (for n ≥ 2).


Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.


Sign in / Sign up

Export Citation Format

Share Document