scholarly journals Computing -series of geometrically hyperelliptic curves of genus three

2016 ◽  
Vol 19 (A) ◽  
pp. 220-234 ◽  
Author(s):  
David Harvey ◽  
Maike Massierer ◽  
Andrew V. Sutherland

Let$C/\mathbf{Q}$be a curve of genus three, given as a double cover of a plane conic. Such a curve is hyperelliptic over the algebraic closure of$\mathbf{Q}$, but may not have a hyperelliptic model of the usual form over$\mathbf{Q}$. We describe an algorithm that computes the local zeta functions of$C$at all odd primes of good reduction up to a prescribed bound$N$. The algorithm relies on an adaptation of the ‘accumulating remainder tree’ to matrices with entries in a quadratic field. We report on an implementation and compare its performance to previous algorithms for the ordinary hyperelliptic case.

2015 ◽  
Vol 219 ◽  
pp. 269-302
Author(s):  
Kenichi Bannai ◽  
Hidekazu Furusho ◽  
Shinichi Kobayashi

AbstractConsider an elliptic curve defined over an imaginary quadratic fieldKwith good reduction at the primes abovep≥ 5 and with complex multiplication by the full ring of integersof K. In this paper, we constructp-adic analogues of the Eisenstein-Kronecker series for such an elliptic curve as Coleman functions on the elliptic curve. We then provep-adic analogues of the first and second Kronecker limit formulas by using the distribution relation of the Kronecker theta function.


1993 ◽  
Vol 295 (1) ◽  
pp. 635-641 ◽  
Author(s):  
Willem Veys

2004 ◽  
Vol 56 (4) ◽  
pp. 673-698 ◽  
Author(s):  
Elie Cali

AbstractLet be an algebraic closure of ℚ2 and K be an unramified finite extension of ℚ2 included in . Let E be an elliptic curve defined over K with additive reduction over K, and having an integral modular invariant. Let us denote by Knr the maximal unramified extension of K contained in . There exists a smallest finite extension L of Knr over which E has good reduction. We determine in this paper the degree of the extension L/Knr.


2015 ◽  
Vol 160 (1) ◽  
pp. 167-189 ◽  
Author(s):  
PAUL POLLACK

AbstractLet E/Q be an elliptic curve with complex multiplication. We study the average size of τ(#E(Fp)) as p varies over primes of good ordinary reduction. We work out in detail the case of E: y2 = x3 − x, where we prove that $$\begin{equation} \sum_{\substack{p \leq x \\p \equiv 1\pmod{4}}} \tau(\#E({\bf{F}}_p)) \sim \left(\frac{5\pi}{16} \prod_{p > 2} \frac{p^4-\chi(p)}{p^2(p^2-1)}\right)x, \quad\text{as $x\to\infty$}. \end{equation}$$ Here χ is the nontrivial Dirichlet character modulo 4. The proof uses number field analogues of the Brun–Titchmarsh and Bombieri–Vinogradov theorems, along with a theorem of Wirsing on mean values of nonnegative multiplicative functions.Now suppose that E/Q is a non-CM elliptic curve. We conjecture that the sum of τ(#E(Fp)), taken over p ⩽ x of good reduction, is ~cEx for some cE > 0, and we give a heuristic argument suggesting the precise value of cE. Assuming the Generalized Riemann Hypothesis for Dedekind zeta functions, we prove that this sum is ≍Ex. The proof uses combinatorial ideas of Erdős.


Sign in / Sign up

Export Citation Format

Share Document