On Meromorphic Continuation of Local Zeta Functions

Author(s):  
Joe Kamimoto ◽  
Toshihiro Nose
2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
M. Bocardo-Gaspar ◽  
Willem Veys ◽  
W. A. Zúñiga-Galindo

Abstract In this article, we establish in a rigorous mathematical way that Koba-Nielsen amplitudes defined on any local field of characteristic zero are bona fide integrals that admit meromorphic continuations in the kinematic parameters. Our approach allows us to study in a uniform way open and closed Koba-Nielsen amplitudes over arbitrary local fields of characteristic zero. In the regularization process we use techniques of local zeta functions and embedded resolution of singularities. As an application we present the regularization of p-adic open string amplitudes with Chan-Paton factors and constant B-field. Finally, all the local zeta functions studied here are partition functions of certain 1D log-Coulomb gases, which shows an interesting connection between Koba-Nielsen amplitudes and statistical mechanics.


1993 ◽  
Vol 295 (1) ◽  
pp. 635-641 ◽  
Author(s):  
Willem Veys

2016 ◽  
Vol 19 (A) ◽  
pp. 220-234 ◽  
Author(s):  
David Harvey ◽  
Maike Massierer ◽  
Andrew V. Sutherland

Let$C/\mathbf{Q}$be a curve of genus three, given as a double cover of a plane conic. Such a curve is hyperelliptic over the algebraic closure of$\mathbf{Q}$, but may not have a hyperelliptic model of the usual form over$\mathbf{Q}$. We describe an algorithm that computes the local zeta functions of$C$at all odd primes of good reduction up to a prescribed bound$N$. The algorithm relies on an adaptation of the ‘accumulating remainder tree’ to matrices with entries in a quadratic field. We report on an implementation and compare its performance to previous algorithms for the ordinary hyperelliptic case.


Sign in / Sign up

Export Citation Format

Share Document