On Flux-Limiting-Based Implicit Large Eddy Simulation

2007 ◽  
Vol 129 (12) ◽  
pp. 1483-1492 ◽  
Author(s):  
Fernando F. Grinstein ◽  
Christer Fureby

Recent progress in understanding the theoretical basis and effectiveness of implicit large eddy simulation (ILES) is reviewed in both incompressible and compressible flow regimes. We use a modified equation analysis to show that the leading-order truncation error terms introduced by certain hybrid high resolution methods provide implicit subgrid scale (SGS) models similar in form to those of conventional mixed SGS models. Major properties of the implicit SGS model are related to the choice of high-order and low-order scheme components, the choice of a flux limiter, which determines how these schemes are blended locally depending on the flow, and the designed balance of the dissipation and dispersion contributions to the numerical solution. Comparative tests of ILES and classical LES in the Taylor–Green vortex case show robustness in capturing established theoretical findings for transition and turbulence decay.

Author(s):  
Fernando F. Grinstein

Abstract Accurate predictions with quantifiable uncertainties are essential to many practical turbulent flow applications exhibiting extreme geometrical complexity and broad ranges of length and time scales. Under-resolved computer simulations are typically unavoidable in such applications, and implicit large-eddy simulation (ILES) often becomes the effective strategy. We focus on ILES initialized with well-characterized 2563 homogeneous isotropic turbulence datasets generated with direct numerical simulation (DNS). ILES is based on the LANL xRAGE code, and solutions are examined as function of resolution for 643, 1283, 2563, and 5123 grids. The ILES performance of new directionally-unsplit high-order numerical hydrodynamics algorithms in xRAGE is examined. Compared to the initial 2563 DNS, we find longer inertial subranges and higher turbulence Re for directional-split 2563 & 5123 xRAGE — attributed to having linked DNS (Navier-Stokes based) solutions to nominally inviscid (higher Re) Euler based ILES solutions. Alternatively — for fixed resolution, we find that significantly higher simulated turbulence Re can be achieved with unsplit (vs. split) discretizations.


2013 ◽  
Author(s):  
Michael Meyer ◽  
Stefan Hickel ◽  
Christian Breitsamter ◽  
Nikolaus Adams

Author(s):  
F. F. Grinstein ◽  
A. A. Gowardhan ◽  
J. R. Ristorcelli

Under-resolved computer simulations are typically unavoidable in practical turbulent flow applications exhibiting extreme geometrical complexity and a broad range of length and time scales. An important unsettled issue is whether filtered-out and subgrid spatial scales can significantly alter the evolution of resolved larger scales of motion and practical flow integral measures. Predictability issues in implicit large eddy simulation of under-resolved mixing of material scalars driven by under-resolved velocity fields and initial conditions are discussed in the context of shock-driven turbulent mixing. The particular focus is on effects of resolved spectral content and interfacial morphology of initial conditions on transitional and late-time turbulent mixing in the fundamental planar shock-tube configuration.


Sign in / Sign up

Export Citation Format

Share Document