spatial scales
Recently Published Documents





2022 ◽  
Vol 3 ◽  
Serena Ceola ◽  
Alessio Domeneghetti ◽  
Guy J. P. Schumann

River floods are one of the most devastating extreme hydrological events, with oftentimes remarkably negative effects for human society and the environment. Economic losses and social consequences, in terms of affected people and human fatalities, are increasing worldwide due to climate change and urbanization processes. Long-term dynamics of flood risk are intimately driven by the temporal evolution of hazard, exposure and vulnerability. Although needed for effective flood risk management, a comprehensive long-term analysis of all these components is not straightforward, mostly due to a lack of hydrological data, exposure information, and large computational resources required for 2-D flood model simulations at adequately high resolution over large spatial scales. This study tries to overcome these limitations and attempts to investigate the dynamics of different flood risk components in the Murray-Darling basin (MDB, Australia) in the period 1973–2014. To this aim, the LISFLOOD-FP model, i.e., a large-scale 2-D hydrodynamic model, and satellite-derived built-up data are employed. Results show that the maximum extension of flooded areas decreases in time, without revealing any significant geographical transfer of inundated areas across the study period. Despite this, a remarkable increment of built-up areas characterizes MDB, with larger annual increments across not-flooded locations compared to flooded areas. When combining flood hazard and exposure, we find that the overall extension of areas exposed to high flood risk more than doubled within the study period, thus highlighting the need for improving flood risk awareness and flood mitigation strategies in the near future.

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 257
Peng Guo ◽  
Jiqiang Lyu ◽  
Weining Yuan ◽  
Xiawan Zhou ◽  
Shuhong Mo ◽  

This study examined the Chabagou River watershed in the gully region of the Loess Plateau in China’s Shaanxi Province, and was based on measured precipitation and runoff data in the basin over a 52-year period (1959–2010), land-use types, normalized difference vegetation index (NDVI), and other data. Statistical models and distributed hydrological models were used to explore the influences of climate change and human activity on the hydrological response and on the temporal and spatial evolution of the basin. It was found that precipitation and runoff in the gully region presented a downward trend during the 52-year period. Since the 1970s, the hydrological response to human activities has become the main source of regional hydrological evolution. Evapotranspiration from the large silt dam in the study area has increased. The depth of soil water decreased at first, then it increased by amount that exceeded the evaporation increase observed in the second and third change periods. The water and soil conservation measures had a beneficial effect on the ecology of the watershed. These results provide a reference for water resource management and soil and water conservation in the study area.

2022 ◽  
Vol 12 (1) ◽  
E. Lester ◽  
T. Langlois ◽  
I. Lindgren ◽  
M. Birt ◽  
T. Bond ◽  

AbstractQuantifying the drivers of population size in reef sharks is critical for the development of appropriate conservation strategies. In north-west Australia, shark populations inhabit coral reefs that border growing centres of human population, industry, and tourism. However, we lack baseline data on reef sharks at large spatial scales (hundreds of km) that might enable managers to assess the status of shark populations in the face of future development in this region. Here, we examined the occurrence, abundance and behaviour of apex (Galeocerdo cuvier, Carcharhinus plumbeus) and reef (C. amblyrhynchos, C. melanopterus, Triaenodon obesus) sharks using > 1200 deployments of baited remote underwater stereo-video systems (stereo-BRUVs) across > 500 km of coastline. We found evidence for species-specific influences of habitat and fishing activities on the occurrence (probability of observation), abundance (MaxN) and behaviour of sharks (time of arrival to the stereo-BRUVs and likelihood of feeding). Although the presence of management zoning (No-take areas) made little difference to most species, C. amblyrhynchos were more common further from boat ramps (a proxy of recreational fishing pressure). Time of arrival for all species was also influenced by distance to boat ramp, although patterns varied among species. Our results demonstrate the capacity for behavioural metrics to complement existing measures of occurrence and abundance in assessing the potential impact of human activities on shark populations.

Carmelo Andujar ◽  
Paula Arribas ◽  
Heriberto López ◽  
Yurena Arjona ◽  
Antonio Pérez-Delgado ◽  

Most of our understanding of island diversity comes from the study of aboveground systems, while the patterns and processes of diversification and community assembly for belowground biotas remain poorly understood. Here we take advantage of a relatively young and dynamic oceanic island to advance our understanding of eco-evolutionary processes driving community assembly within soil mesofauna. Using whole organism community DNA (wocDNA) metabarcoding and the recently developed metaMATE pipeline, we have generated spatially explicit and reliable haplotype-level DNA sequence data for soil mesofaunal assemblages sampled across the four main habitats within the island of Tenerife. Community ecological and metaphylogeographic analyses have been performed at multiple levels of genetic similarity, from haplotypes to species and supraspecific groupings. Broadly consistent patterns of local-scale species richness across different insular habitats have been found, whereas local insular richness is lower than in continental settings. Our results reveal an important role for niche conservatism as a driver of insular community assembly of soil mesofauna, with only limited evidence for habitat shifts promoting diversification. Furthermore, support is found for a fundamental role of habitat in the assembly of soil mesofauna, where habitat specialism is mainly due to colonisation and the establishment of preadapted species. Hierarchical patterns of distance decay at the community level and metaphylogeographical analyses support a pattern of geographic structuring over limited spatial scales, from the level of haplotypes through to species and lineages, as expected for taxa with strong dispersal limitations. Our results demonstrate the potential for wocDNA metabarcoding to advance our understanding of biodiversity.

2022 ◽  
Kristof Van Oost ◽  
Jo Six

Abstract. The acceleration of erosion, transport and burial of soil organic carbon (C) in response to agricultural expansion represents a significant perturbation of the terrestrial C cycle. Recent model advances now enable improved representation of the relationships between sedimentary processes and C cycling and this has led to substantially revised assessments of changes in land C as a result of land cover and climate change. However, surprisingly a consensus on both the direction and magnitude of the erosion-induced land-atmosphere C exchange is still lacking. Here, we show that the apparent soil C erosion paradox, i.e., whether agricultural erosion results in a C sink or source, can be reconciled when comprehensively considering the range of temporal (from seconds to millennia) and spatial scales (from soil microaggregates to the Land Ocean Aquatic Continuum (LOAC)) at which erosional effects on the C cycle operate. Based on the currently available data (74 studies), we developed a framework that describes erosion-induced C sink and source terms across scales. Based on this framework, we conclude that erosion is a source for atmospheric CO2 when considering only small temporal and spatial scales, while both sinks and sources appear when multi-scaled approaches are used. We emphasize the need for erosion control for the benefits it brings for the delivery of ecosystem services, particularly in low-input systems, but our analysis clearly demonstrates that cross-scale approaches are essential to accurately represent erosion effects on the global C cycle.

2022 ◽  
Vol 4 ◽  
Matthew J. Hecking ◽  
Jenna M. Zukswert ◽  
John E. Drake ◽  
Martin Dovciak ◽  
Julia I. Burton

Trait-based analyses provide powerful tools for developing a generalizable, physiologically grounded understanding of how forest communities are responding to ongoing environmental changes. Key challenges lie in (1) selecting traits that best characterize the ecological performance of species in the community and (2) determining the degree and importance of intraspecific variability in those traits. Recent studies suggest that globally evident trait correlations (trait dimensions), such as the leaf economic spectrum, may be weak or absent at local scales. Moreover, trait-based analyses that utilize a mean value to represent a species may be misleading. Mean trait values are particularly problematic if species trait value rankings change along environmental gradients, resulting in species trait crossover. To assess how plant traits (1) covary at local spatial scales, (2) vary across the dominant environmental gradients, and (3) can be partitioned within and across taxa, we collected data on 9 traits for 13 tree species spanning the montane temperate—boreal forest ecotones of New York and northern New England. The primary dimension of the trait ordination was the leaf economic spectrum, with trait variability among species largely driven by differences between deciduous angiosperms and evergreen gymnosperms. A second dimension was related to variability in nitrogen to phosphorous levels and stem specific density. Levels of intraspecific trait variability differed considerably among traits, and was related to variation in light, climate, and tree developmental stage. However, trait rankings across species were generally conserved across these gradients and there was little evidence of species crossover. The persistence of the leaf economics spectrum in both temperate and high-elevation conifer forests suggests that ecological strategies of tree species are associated with trade-offs between resource acquisition and tolerance, and may be quantified with relatively few traits. Furthermore, the assumption that species may be represented with a single trait value may be warranted for some trait-based analyses provided traits were measured under similar light levels and climate conditions.

2022 ◽  
Vol 14 (2) ◽  
pp. 370
Cameron Proctor ◽  
Cedelle Pereira ◽  
Tian Jin ◽  
Gloria Lim ◽  
Yuhong He

Efforts to monitor terrestrial decomposition dynamics at broad spatial scales are hampered by the lack of a cost-effective and scalable means to track the decomposition process. Recent advances in remote sensing have enabled the simulation of litter spectra throughout decomposition for grasses in general, yet unique decomposition pathways are hypothesized to create subtly different litter spectral signatures with unique ecosystem functional significance. The objectives of this study were to improve spectra–decomposition linkages and thereby enable the more comprehensive monitoring of ecosystem processes such as nutrient and carbon cycles. Using close-range hyperspectral imaging, litter spectra and multiple decomposition metrics were concurrently monitored in four classes of naturally decayed litter under four decomposition treatments. The first principal component accounted for approximately 94% of spectral variation in the close-range imagery and was attributed to the progression of decomposition. Decomposition-induced spectral changes were moderately correlated with the leaf carbon to nitrogen ratio (R2 = 0.52) and sodium hydroxide extractables (R2 = 0.45) but had no correlation with carbon dioxide flux. Temperature and humidity strongly influenced the decomposition process but did not influence spectral variability or the patterns of surface decomposition. The outcome of the study is that litter spectra are linked to important metrics of decomposition and thus remote sensing could be utilized to assess decomposition dynamics and the implications for nutrient recycling at broad spatial scales. A secondary study outcome is the need to resolve methodological challenges related to inducing unique decomposition pathways in a lab environment. Improving decomposition treatments that mimic real-world conditions of temperature, humidity, insolation, and the decomposer community will enable an improved understanding of the impacts of climatic change, which are expected to strongly affect microbially mediated decomposition.

2022 ◽  
Vol 26 (1) ◽  
pp. 167-181
Haowen Yue ◽  
Mekonnen Gebremichael ◽  
Vahid Nourani

Abstract. Accurate weather forecast information has the potential to improve water resources management, energy, and agriculture. This study evaluates the accuracy of medium-range (1–15 d) precipitation forecasts from the Global Forecast System (GFS) over watersheds of eight major dams (Selingue Dam, Markala Dam, Goronyo Dam, Bakolori Dam, Kainji Dam, Jebba Dam, Dadin Kowa Dam, and Lagdo Dam) in the Niger river basin using NASA's Integrated Multi-satellitE Retrievals (IMERG) Final Run merged satellite gauge rainfall observations. The results indicate that the accuracy of GFS forecast varies depending on climatic regime, lead time, accumulation timescale, and spatial scale. The GFS forecast has large overestimation bias in the Guinea region of the basin (wet climatic regime), moderate overestimation bias in the Savannah region (moderately wet climatic regime), but has no bias in the Sahel region (dry climate). Averaging the forecasts at coarser spatial scales leads to increased forecast accuracy. For daily rainfall forecasts, the performance of GFS is very low for almost all watersheds, except for Markala and Kainji dams, both of which have much larger watershed areas compared to the other watersheds. Averaging the forecasts at longer timescales also leads to increased forecast accuracy. The GFS forecasts, at 15 d accumulation timescale, have better performance but tend to overestimate high rain rates. Additionally, the performance assessment of two other satellite products was conducted using IMERG Final estimates as reference. The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) merged satellite gauge product has similar rainfall characteristics to IMERG Final, indicating the robustness of IMERG Final. The IMERG Early Run satellite-only rainfall product is biased in the dry Sahel region; however, in the wet Guinea and Savannah regions, IMERG Early Run outperforms GFS in terms of bias.

Sign in / Sign up

Export Citation Format

Share Document