turbine cascade
Recently Published Documents


TOTAL DOCUMENTS

716
(FIVE YEARS 115)

H-INDEX

25
(FIVE YEARS 4)

AIP Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 015316
Author(s):  
Xian Zeng ◽  
Jiaqi Luo ◽  
Jiahuan Cui

2021 ◽  
Author(s):  
Anand P. Darji ◽  
Beena D. Baloni ◽  
Chetan S. Mistry

Abstract End wall flows contribute the most crucial role in loss generation for axial flow turbine and compressor blades. These losses lead to modify the blade loading and overall performance in terms of stable operating range. Present study aimed to determine the end wall flow streams in a low speed low pressure linear turbine cascade vane using numerical approach. The study includes two sections. The first section includes an attempt to understand different secondary flow streams available at end wall. Location of generation of horseshoe vortex streams and subsequent vortex patterns are identified in the section. The selection of suitable turbulence model among SST (Shear Stress Transport) k–ω and SST γ–θ to identify end wall flow streams is studied in prior in the section. The steady state numerical study is performed using Reynolds Averaged Navier-Stoke’s Equations closed by SST γ–θ turbulence model. The computational results are validated with experimental results available in the literature and are found to be in good agreement. The study is extended for different inflow conditions in later section. The second section includes effect of flow incidence and turbulence intensity on the end wall secondary flow field. Inflow incidences considered for the study are −20°, −10°, 0° (design incidence), +10° and +20°. The inlet turbulence intensities are varied by 1% and 10% for each case. The results revealed different secondary flow patterns at an end wall and found the change in behavior with an inflow conditions. SST γ–θ turbulence model with lower turbulence intensity is more suitable to identify such flow behavior.


2021 ◽  
Vol 24 (5) ◽  
pp. 44-48
Author(s):  
Dunam Hong ◽  
Myungho Kim ◽  
Seungjin Song

2021 ◽  
Vol 143 (12) ◽  
Author(s):  
Sasuga Ito ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Kaito Manabe

Abstract Turbulence is one of the most important phenomena in fluid dynamics. Large eddy simulation (LES) generally allows us to analyze smaller eddies than when using simulations based on unsteady Reynolds-averaged Navier–Stokes equations (URANS). In addition, the numerical solutions of LES show good agreements with experiments and numerical solutions based on direct numerical simulation. URANS simulations are, however, frequently used in academia and industry because LES computations are much more expensive compared with URANS simulations. In this investigation, an optimization of unsolved coefficients of the k–ω two equations model is performed on the transonic flow around T106A low-pressure turbine cascade to improve the accuracy of turbulence prediction with URANS. For the optimization approach, two-dimensional URANS is combined with ensemble Kalman filter which is one of the data assimilation techniques. In the assimilation process, a time- and spanwise-averaged LES result is used as pseudo-experimental data. Three-dimensional URANS simulations are performed for the evaluation of the optimization effect. URANS simulations are also applied to a different turbine cascade flow for the evaluation of the robustness of the optimized coefficients. These URANS results confirmed that the optimized coefficients improve the accuracy of turbulence prediction.


2021 ◽  
Vol 143 (12) ◽  
Author(s):  
Jin Wang ◽  
Zhanming Zhao ◽  
Gongnan Xie ◽  
Hrvoje Mikulčić ◽  
Milan Vujanović ◽  
...  

Abstract Based on the critical velocity model, impact and capture efficiencies in an AGTB turbine cascade are investigated numerically under various inlet angles of mainstream, blowing ratios, particle sizes, and particle densities. The effect of hole configuration on deposition is analyzed based on comparisons of results from combined hole and cylindrical hole. The impact efficiency increases with the increase of particle size. Impact area on pressure side of blade surface expands with increasing of the mainstream inlet angle from 123 deg to 143 deg. The capture efficiency decreases with the increase of blowing ratio for 10 µm particles. For particles with densities of 1485 kg/m3, 1980 kg/m3, and 2475 kg/m3, the maximum capture efficiency is reached when the particle size is 5 µm. The particle capture efficiency for the combined hole is up to 3.9% lower than that for cylindrical hole when the mainstream inlet angle is 123 deg.


Author(s):  
Ettore Bertolini ◽  
Paul Pieringer ◽  
Wolfgang Sanz

The aim of this work is to study the influence of different subgrid-scale (SGS) closure models and inflow turbulence conditions on the boundary layer transition on the suction side of a highly loaded transonic turbine cascade in the presence of high free-stream turbulence using large eddy simulations (LES) of the MUR237 test case. For the numerical simulations, the MUR237 flow case was considered and the incoming free-stream turbulence was reproduced using the synthetic eddy method (SEM). The boundary layer transition on the blade suction side was found to be significantly influenced by the choice of the SGS closure model and the SEM parameters. These two aspects were carefully evaluated in this work. Initially, the influence of three different closure models (Smagorinsky, WALE, and subgrid-scale kinetic energy model) was evaluated. Among them, the WALE SGS closure model performed best compared to the Smagorinsky and KEM models and, for this reason, was used in the following analysis. Finally, different values of the turbulence length scale, eddies density, and inlet turbulence for the SEM were evaluated. As shown by the results, among the different parameters, the choice of the turbulence length scale plays a major role in the transition onset on the blade suction side.


Sign in / Sign up

Export Citation Format

Share Document