Eigenvalue Inclusion Principles for Discrete Gyroscopic Systems

1992 ◽  
Vol 59 (2S) ◽  
pp. S278-S283 ◽  
Author(s):  
B. Yang

In his famous treatise The Theory of Sound, Rayleigh enunciated an eigenvalue inclusion principle for modified discrete nongyroscopic systems. According to this principle, the natural frequencies of a nongyroscopic system without and with modification are alternatively located along the positive real axis. Although vibration and dynamics of discrete gyroscopic systems have been extensively studied, the problem of inclusion principles for discrete gyroscopic systems has not been addressed. This paper presents several eigenvalue inclusion principles for a class of discrete gyroscopic systems. A transfer function formulation is proposed to describe modified gyroscopic systems. Six types of modifications and their effects on the system natural frequencies are studied. It is shown that the transfer function formulation provides a systematic and convenient way to handle modification problems for discrete gyroscopic systems.

1992 ◽  
Vol 59 (3) ◽  
pp. 650-656 ◽  
Author(s):  
B. Yang

In his famous treatise The Theory of Sound, Rayleigh enunciated an eigenvalue inclusion principle for the discrete, self-adjoint vibrating system under a constraint. According to this principle, the natural frequencies of the discrete system without and with the constraint are alternately located along the positive real axis. Although it is commonly believed that the same rule also applied for distributed vibrating systems, no proof has been given for the distributed gyroscopic system. This paper presents several eigenvalue inclusion principles for a class of distributed gyroscopic systems under pointwise constraints. A transfer function formulation is proposed to describe the constrained system. Five types of nondissipative constraints and their effects on the system natural frequencies are studied. It is shown that the transfer function formulation is a systematic and convenient way to handle constraint problems for the distributed gyroscopic system.


Author(s):  
B. Yang

Abstract This paper presents several eigenvalue inclusion principles for a class of distributed gyroscopic systems under pointwise constraints. A transfer function formulation is proposed to describe the constrained system. Five types of non-dissipative constraints and their effects on the system natural frequencies are studied It is shown that the natural frequencies of the constrained gyroscopic system alternate with those of the unconstrained system.


1964 ◽  
Vol 14 (2) ◽  
pp. 137-141
Author(s):  
R. Wilson

Let f(z) be represented on its circle of convergence |z| = 1 by the Taylor seriesand suppose that its sole singularity on |z| = 1 is an almost isolated singularity at z = 1. In the neighbourhood of such a singularity f(z) is regular on a sufficiently small disk, centre z = 1, with the outward drawn radius along the positive real axis excised. If also in this neighbourhood |f(z)| e−(1/δ)ρ remains bounded for some finite ρ, where δ is the distance from the excised radius, then the singularity is said to be of finite exponential order.


2019 ◽  
Vol 20 (2) ◽  
pp. 217
Author(s):  
Eliana Contharteze Grigoletto ◽  
Edmundo Capelas Oliveira ◽  
Rubens Figueiredo Camargo

The Mittag-Leffler functions appear in many problems associated with fractional calculus. In this paper, we use the methodology for evaluation of the inverse Laplace transform, proposed by M. N. Berberan-Santos, to show that the three-parameter Mittag-Leffler function has similar integral representations on the positive real axis. Some of the integrals are also presented.


1970 ◽  
Vol 22 (3) ◽  
pp. 486-491 ◽  
Author(s):  
Paul Eenigenburg

Definition 1.1. Let be analytic for |z| < 1. If ƒ is univalent, we say that ƒ belongs to the class S.Definition 1.2. Let ƒ ∈ S, 0 ≦ α < 1. Then ƒ belongs to the class of convex functions of order α, denoted by Kα, provided(1)and if > 0 is given, there exists Z0, |Z0| < 1, such thatLet ƒ ∈ Kα and consider the Jordan curve ϒτ = ƒ(|z| = r), 0 < r < 1. Let s(r, θ) measure the arc length along ϒτ; and let ϕ(r, θ) measure the angle (in the anti-clockwise sense) that the tangent line to ϒτ at ƒ(reiθ) makes with the positive real axis.


Sign in / Sign up

Export Citation Format

Share Document