transfer function
Recently Published Documents


TOTAL DOCUMENTS

8413
(FIVE YEARS 1126)

H-INDEX

96
(FIVE YEARS 9)

2022 ◽  
Vol 166 ◽  
pp. 108689
Author(s):  
Xianshan Zhang ◽  
Peiwei Sun ◽  
Leilei Qiu ◽  
Songmao Pu ◽  
Xinyu Wei

2022 ◽  
Vol 165 ◽  
pp. 108324
Author(s):  
Runyu Lu ◽  
Md Rifat Shahriar ◽  
Pietro Borghesani ◽  
Robert B. Randall ◽  
Zhongxiao Peng

2022 ◽  
Vol 236 ◽  
pp. 111813
Author(s):  
Eirik Æsøy ◽  
Håkon T. Nygård ◽  
Nicholas A. Worth ◽  
James R. Dawson

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 557
Author(s):  
Shuiguang Tong ◽  
Junjie Li ◽  
Feiyun Cong ◽  
Zilong Fu ◽  
Zheming Tong

Due to planetary movement of planet gears, the vibration signal perceived by a stationary sensor is modulated and difficult to diagnose. This paper proposed a vibration separation methodology compensated by a time-varying transfer function (TVTF-VS), which is a further development of the vibration separation (VS) method in the diagnosis of non-hunting tooth planetary gearboxes. On the basis of VS, multi-teeth VS is proposed to extract and synthesize the meshing signal of a planet gear using a single transducer. Considering the movement regularity of a planetary gearbox, the time-varying transfer function (TVTF) is represented by a generalized expression. The TVTF is constructed using a segment of healthy signal and an evaluation indicator is established to optimize the parameters of the TVTF. The constructed TVTF is applied to overcome the amplitude modulation effect and highlight fault characteristics. After that, experiments with baseline, pitting, and compound localized faults planet gears were conducted on a non-hunting tooth planetary gearbox test rig, respectively. The results demonstrate that incipient failure on a planet gear can be detected effectively, and relative location of the local faults can be determined accurately.


Author(s):  
Hyun-gi Kim ◽  
Sungchan Kim ◽  
Byung-Geun Ha

In this study, for the purpose of conducting the structural tests for the verification of structural soundness of the flight-load conditions of the external fuel tank for the fixed-wing aircraft, the flight load acting on the external fuel tank was converted to test load and the suitability of the converted loads was verified. The loads imposed on the external fuel tank were expressed as the combination of the inertial load (based on the acceleration in the translational direction) and the tangential direction inertial load (based on the angular acceleration of the moment). To calculate the test load, the transfer function table was generated by calculating the shear load and moment based on the unit load. For this purpose, a transfer function table was established by dividing the external fuel tank into a few sections and calculating the shear load and moment generated by the unit shear load and unit moment in each section. In addition, the test load for each section was calculated by computing the established transfer function table and flight-load conditions. However, in actual structural tests, it is often not possible to impose a load in the same position as the point at which the shear load and moment are calculated. For this reason, the actual test-load positions had to be determined and the calculated test loads were redistributed to those positions. Then, the final test load plan was established by applying a whiffle tree to increase the efficiency of the test while also making it easier to apply the actuators. Finally, the suitability of the established test load plan was confirmed by comparison with the flight-load conditions.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 397
Author(s):  
Paulius Cicėnas ◽  
Virginijus Radziukynas

As the number of available renewable energy sources has increased annually, there has been a corresponding rise in the levels of pollution created by traditional electricity generation, ultimately contributing to breaking down the stability of the electrical system at large. Therefore, there is an increasing need to integrate the use of nonpolluting electricity sources, such as pumped storage hydropower plants (PSHP), to ensure the stability of the power system and to maintain the frequency of the system from year-to-year. This paper addresses the issue of PSHP being unsuitable for providing Frequency Containment Reserve (FCR) services and proposes real measurements of the aggregation approach to obtain different data arrays. Based on this, the proposed methodology is orientated toward obtaining transfer functions that were developed using the parametric identification models, and the efficiency of these functions was thoroughly investigated. The proposed transfer function in this paper, in combination with battery energy storage system (BESS) technologies, would allow PSHP technologies to occupy a space in the ancillary services market by providing FCR, Frequency Restoration Reserve (FRR), and Replacement Reserve (RR) services. The performance of the function activated in the BESS is positively validated using the Simulink modeling environment.


Sign in / Sign up

Export Citation Format

Share Document